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Chapter 1: Introduction 

1.1 General  

Biofuels and alternative energy from renewable sources are widely considered to be 

one of the most sustainable alternatives to fossil fuels and viable means to combat 

overcoming energy depletion crisis (Hill et al., 2006). Biofuels are obtained by processing 

different kinds of biomasses. They come in the forms of solids (bio-chair), liquid (bioethanol, 

bio-oil and biodiesel), and gases (biogas, biohydrogen and biosyngas). According to the 

Energy Information Administration (EIA), the world energy consumption will grow by 56% 

between 2010 and 2040 (IEO, 2013). In 2012, United States alone consumed 21% of the 

world’s total energy with only 5% of world’s population. Renewable energy has long been 

proposed as one solution of the most pressing issues in the U.S., including energy security, 

economic wellbeing, and the stability of global climate (U.S. DOE, 2010). Although fossil 

fuels continue to supply almost 80% of world energy use through 2040, renewable energy is 

the world’s fastest-growing energy source, increasing by 2.5% per year (IEO, 2013). Due to 

the increasing combustion of fossil carbon worldwide, the amount of greenhouse gases have 

increased which lead to global warming and climate change. These concerns have given rise 

to the idea of investigating biofuels and have stimulated alternative energy development.   

Lipid biofuels have been developed and optimized over the past several decades. First 

generation biofuels such as biodiesel and bioethanol from crop plants and oil seeds are 

currently on market. In 2012, about 969 million gallons of biodiesel were produced in the 

U.S. (IEO, 2013). However, first generation biofuels have some main problems, including (1) 
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they encroach on arable land, freshwater supplies or biodiverse natural landscapes; (2) they 

are limited in their ability to achieve targets for oil-product substitutes; (3) they are also in 

slow economic growth (Sims et al., 2008). The cumulative impact of these concerns has 

inspired searching for second-generation biofuels produced from non-food biomass or 

agricultural residues. Although use of second generation biofuels could help avoid many of 

the problems associated with first generation biofuels, it still faces major constraints to its 

technical and commercial development. Thus, it is necessary to make significant progress in 

the commercial and technology development of second generation biofuels.  

Microalgal biofuels are alternatives to fossil fuel and use microalgae as a feedstock, 

which offer great promise in contributing to solutions for the rapidly growing energy 

demands and the climate change. Mircroalgae have the potential to produce biofuels to meet 

the world’s growing energy demands. Their high actual photosynthetic yield compared to 

terrestrial plants (whose growth is limited by CO2 availability) leads to large potential algal 

biomass productions in photobioreactors of several tens of tons per hectare, per year (Chisti, 

2007). Microalgae appear to be the best choice of feed stock for biofuel production due to the 

fact that they grow 50 to 100 times faster than conventional food crops (Spolaore et al., 2006). 

Microalgae do not only have the capacity to produce high-value biomass, but also the ability 

to do so in an environmentally friendly and supportive way. This is because they use sunlight, 

carbon dioxide and water to grow without requiring freshwater resources or soil for growth. 

Microalgal biomass contains approximately 50% carbon by dry weight, and all of this carbon 

is typically derived from carbon dioxide fed continually during daylight hours (Sánchez et al., 
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2003). Based on current and potential markets, microalgae have become a product valued at 

$1.25 billion a year globally, not including processed products (Becker, 2007). 

The primary aspects of producing algal biofuels are the design of the growth system, 

optimization of biomass production, and economically efficient air extraction and processes. 

The cultivation systems of algae can be divided into two major categories, open ponds and 

photobioreactors. Open pond systems can be used for very fast growing strains or for strains 

that grow in extreme conditions, especially those strains with high oil content (Briggs, 2004; 

González Fernández et al., 2011). Photobioreactors are capable of achieving an ideal 

environment for high algae cultivation productivity (Mohan et al., 2007). The basic goal of 

designing a cultivation system is to maximize the growth rate and to obtain a high biomass 

production, eventually making the system economically practical. However, this goal may 

compare the main objective to produce more lipids because some scientist have reported an 

inverse relation between cell lipid content and cell growth rate in several algal species 

( Williams and Laurens, 2010).  

Mechanistic simulation modeling is often used during the design of algae cultivation 

systems to assist management and improve the efficiency of microalgal oil productions. A 

mechanistic model based on mass balances and biological processes is a critical tool for 

predicting biomass and lipid production with respect to environmental conditions during 

optimization and the scale-up process. Complex mathematical expressions of the 

relationships of the various biological and physiological processes controlling microalgal 

production are needed to quantify, and then to be integrated into a mechanistic model aiming 
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at optimize the efficiency of microalgae production in the reactor (Benson et al., 2012).   

1.2 Goals and Objectives of Research 

In this study, a mechanistic model of a flat-plate microalgae photobioreactor has been 

developed using the approaches in the previous studies (Benson et al., 2007) in order to 

optimize biomass and lipid production and identify optimal operation conditions. This 

mechanistic model simulates the light dynamics, microalgae growth kinetics, biological and 

physiological responses, and production efficiency in microalgae culture. The main goal of 

the study is to improve the efficiency of the flat-plate photobioreactor through quantification 

and integration of various fundamental processes governing microalgae and lipid production. 

A complex network of numerical relationships within the photobioreactor systems was 

discussed and integrated in the mechanistic model to achieve simulations which can clarify 

the path to this goal.  

The specific objectives had to be met to develop the model and accomplish the goal. 

They are as follows: 

1. Determine the relationship between surface photosynthetic photo flux density 

(PPFD) (Io) emitted by lamp and the distance of light source (D) from the culture 

surface; 

2. Determine the relationship between average PPFFR at a given depth (Ia) as a 

function of Io and bioimass concentration (X) in the photobioreator; 

3. Determine the relationship between average PPFFR (Ia) and biomass concentration 
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(X) in the phtobioreactor; 

4. Examine the effect of suspended biomass concentration (X) on light attenuation 

coefficient (kr) expressed as biomass light attenuation coefficient (kb); 

5. Determine the microalgae growth kinetics, including maximum growth rate (µmax) 

and optimum PPFD (Iopt); 

6. Develop of a mechanistic model that simulates biomass production, lipid 

production, and physiological responses.  

Several lab experiments were done to meet these objectives. The model was 

developed using the parameters of light dynamics and growth kinetics within the flat-plate 

photobioreactors, and then used to gain a better understanding of various fundamental 

processes and to optimize the efficiency of microalgae-based lipid production systems.   
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Chapter 2: Literature Review 

2.1 Microalgae Biofuels  

Microalgae are considered as an alternative feedstock for next-generation biofuel 

production (Sakthivel et al., 2011). Mircroalgae are sunlight-driven cell factories that convert 

carbon dioxide to potential biofuels, foods, feeds and high-value bioactives (Christi and 

Gavrilescu, 2005). Recent increases in energy demand, environmental concerns, and oil 

prices have stimulated investment in second-generation biofuels research. The Energy 

Independence and Security Act of 2007 (EISA) established U.S. biofuel production targets 

requiring transportation fuel consumed in the U.S. to contain a minimum of 36 billion gallons 

of renewable fuels, including cellulosic biofuels and biomass-based diesel, by 2022 (U.S. 

DOE, 2010). Figure 2.1 shows the utilization of algae biomass as a resource for bioenergy. 

 
Figure 2.1: Utilization of algal biomass for bioenergy productions (Wegeberg and Felby, 
2010). 

Several advantages of microalgae biofuel productions over other energy crops have 
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attracted significant interest and investment. The diverse benefits of algae include: (1) a high 

potential yield per acre than terrestrial crops; (2) the ability to grow in non-arable land or 

non-potable water; (3) the potential for consumptions of CO2 and other nutrients in waste 

streams during growth; (4) a high concentration of lipids; (5) a year-round daily harvest 

production; and (6) non-food based feedstock resources (Chisti, 2007; Gouveia and Oliveira, 

2009; U.S. DOE, 2010). The high actual photosynthetic yield of algae compared to terrestrial 

plants (whose growth is limited by CO2 availability) leads to large potential algal biomass 

productions in photobioreactors of several tens of tons per hectare, per year (Chisti, 2007).  

The three major components which can be extracted from microalgal biomass are 

lipids, carbohydrates, and proteins (Chisti, 2007). Lipids and carbohydrates have roles as fuel 

precursors (gasoline, biodiesel and bioethanol), while proteins can be used as high value 

by-products such as aquaculture and livestock feeds (U.S. DOE, 2010). Although many 

previous researchers have focused on the lipid compositions from nutritional standpoint, 

there are currently have some critical technical barriers for the development of economical 

scale algal lipid production facilities. This is due to high energy needs associated with drying 

algal biomass and separating out desirable products, which results in a high cost to produce 

microalgae biofuels. As a result, new approaches are exploring cost optimization of the 

processes associated with the industrial scale up of algae biofuels productions. 

Nannochloropsis has been identified as a promising source of lipid feedstock for 

biofuel production. It has a fairly high oil content at nearly 28% of dry weight, but more 

importantly it also contains enough unsaturated fatty acid for a quality biodiesel (Gouveia 



www.manaraa.com

 

8 
 

                                  

and Oliveria, 2009). Compared with other microalgae species, Nannochloropsis is capable of 

generating ultra-high biomass densities, and it is rich in metabolites such as pigments (Lee et 

al., 2006). Nannochloropsis is also one of the most common types of microalgae, which has 

been exploited widely in aquaculture practices for food supplements (Lubian et al., 2000).  

2.2 Microalgal Physiology and Biochemistry  

2.2.1 Microalgal Photosynthesis 

Microalgal photosynthesis is a biochemical process that transfers the energy from the 

incoming photons to electrons in the photosynthetic cells, subsequently converted into 

chemical energy in the form of carbohydrates (sugar). The efficiency of photosynthesis is 

directly proportional to the microalgal biomass production. An outline of photosynthesis can 

be seen in Figure 2.2. 

.  
Figure 2.2: Reactions taking place during photosynthesis (Wegeberg and Felby, 2010). 

The stoichiometry of photosynthesis can be simply written as (Karube et al., 1992): 

2612622 6)(66 OOHCphotonslightCOOH +=++                   (2.1)  
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where C6H12O6 is a carbohydrate which is synthesized in photosynthesis. This equation is the 

net result of two processes: (1) a redox process that requires light, which is conventionally 

called as the “light reaction”; (2) a series of enzymatic reactions that require water to form 

Nicotinamide Adenine Dinucleotide Phosphate (NADP), and is often referred to as the “dark 

reaction.” These two reactions can by written individually as (Karube et al., 1992): 

Light reaction: -+ ++®+ eHOlightOH 2424612 22                (2.2) 

Dark reaction: OHNADPHOHNADP ++®+ ++
2                (2.3) 

The light energy that is captured by microalgal cells is stored in the form of chemical 

bonds of compounds such as NADPH; then the energy contained in NADPH is used to 

reduce CO2 to glucose ( C6H12O6) (Chapra,1997).  

Not all incoming wavelengths of light can be absorbed by the plant pigments. 

Photosynthetically available radiation (PAR) represents the useful regions 400-700 nm 

wavelengths that can be used for photosynthesis, which amounts to 45 -50% of total 

incoming radiation that reaches the earth’s surface (Kirk, 1994).  

2.2.2 Major Biochemical Composition of Microalgae  

The three major components of microalgae biomass are lipids, carbohydrates, and 

proteins. They will greatly determine the economical value of biomass producers. Microalgal 

oil most accumulated as triglycerides can be transformed to biodiesel (Zhang et al., 2003). 

Maximizing microalgae photosynthesis productions with regards to lipids, carbohydrates and 

proteins will greatly increase their overall economic values. 
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Lipids are fatty acids and their derivatives serve both as energy reserves and structural 

membranes of the microalgae cell. Microalgae synthesize fatty acids principally for 

esterification into glycerol-based membrane lipids under optimal conditions of growth (Hu et 

al., 2008). The chemical structure of fatty acids generally consists of medium-chain (C10-14), 

long-chain (C16-18) and very-long-chain (≥C20) species and fatty acid derivatives 

(Thompson, 1996). The major membrane lipids are phospholipids and glycolipids, which 

individually reside in the chloroplast and in the plasma membrane (Wada and Murata, 1998). 

Microalgae have the ability of survival over a wide range of environmental conditions, due to 

the tremendous diversity of cellular lipids as well as the ability to modify lipid metabolism 

efficiently in responses to changes in temperature (Thompson, 1996). Thus, lipids are highly 

variable for various genera and are altered by environmental conditions. The typical lipid 

classes of microalgae consist of phospholipids, glycolipids, and triglycerides, which are 

important to biodiesel and biofuel production. It is known that the varieties of lipids 

determine the need for pretreatment before they are converted to biofuel properties (Christie, 

2003). Phospholipids and glycolipids are major components of the cell’s membrane, while 

triglycerides do not perform a structural role but instead serve as a storage form that are 

important energy reserves. The class distributions of lipids derived from published analyses 

on seven species including Nannochloropsis sp. are listed in Table 2.1 (Williams and Laurens, 

2010). As the table shows, these constituents vary substantially depending on the species, the 

environmental conditions, and metabolism. The lipid class distribution also varies. High 

triglyceride proportion of the overall lipid fraction is often achieved as the metabolic rate 
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slows down (Lopez-Alonso et al., 2000).   

 
Table 2.1: Mean lipid class content as a percent of total lipid of individual algal species 

(Williams and Laurens, 2010). 
 Simple lipids Glycolipids Phospholipids 

Chaetoceros species 37±16 36±8 25±8 

Chlamydomonas species 48±10 44±13 6±3 

Dunaliella tertiolecta  7±1 67±1 25±0 

Dunalliella viridis 13±1 44±3 42±2 

Isochrysis species 36±3 35±1 27±3 

Nannochloropsis species 22±1 39±0 38±1 

Phaeodactylum tricornutum 54±6 34±5 11±1 

 

Carbohydrates are common single components that serve both structural and 

metabolic functions. Carbohydrates of microalgae are mainly represented by polysaccharides 

that include various soluble and physiologically active components (Maksimova et al., 2004). 

The structure of carbohydrates is often derived with acids or sulfate groups, indicating that 

biochemical conversion of microalgae is not a straightforward task. And different classes of 

microalgae produce specific types of polysaccharides as the early photosynthesis products. 

Studies have shown that carbohydrates such as starches and sugars can be processed into 

ethanol.    

Proteins are biochemical compounds of different amino acids that serve both as 

structural and metabolic components (Maksimova et al., 2004). Microalgae proteins have 

important commodity value because of their high nutritional quality, so they are marketed as 
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health food, cosmetics, and animal feed (Adams et al., 2009). Due to their amino acid 

composition, proteins are considered as dietary essentials for mammals, yet they are unable 

to synthesize them. The nutritional quality of proteins is determined basically by the content 

and proportion of its amino acids.  

Depending on the species and growth conditions, microalgae can yield a great variety 

of the major biochemical categories. Microalgae have varied lipid contents of 20 to 80% by 

dry weight (Chisti, 2007). Microalgae belonging to different species possess the ability to 

produce a large fraction of their dry mass as lipids, as shown in Table 2.2 (Chisti, 2007; 

Meng et al., 2009). A series of environmental stress factors give rise to the lipid content seen 

in the table, such as temperature and limitations of nitrogen, phosphorus, and salinity. Under 

optimal growth conditions, many microalgae have the ability to produce large amount of 

biomass but with relatively low lipid contents of 5-20% by dry weight (Sharma et al., 2012). 

Under photo-oxidative stress or other environmental stress conditions, many microalgae alter 

their lipid biosynthetic pathways toward the accumulation of neutral lipids as at amount of 

20-50% dry weight (Hu et al., 2008). Lipids extracted from microalgae can be used to 

produce biodiesel, with leftover solids including mostly carbohydrates and proteins (Shen et 

al., 2009).  

The relationship between lipid content and growth rate was investigated in previous 

studies. Shifrin and Chisholm (1981) found that there is a significant inverse relationship 

between growth rate and lipid content (Figure 2.3). A similar negative relationship is also 

reported by Thompson et al. (1990). From these relationships as plotted by Williams and 
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Laurens (2010), in Figure 2.3, the maximum lipid production for a given growth rate can be 

estimated.  

 
Table 2.2: Oil content of microalgae (Chisti, 2007; Meng et al., 2009). 

Microalgae  Oil Content (% dry weight) 

Botryococcus braunii 25-75 

Chlorella sp. 28-32 

Crypthecodinium cohnii 20 

Cylindrotheca sp. 16-37 

Dunaliella primolecta 23 

Isochrysis sp. 25-33 

Monallanthus salina ＞20 

Nannochloris sp. 20-35 

Nannochloropsis sp. 31-68 

Neochloris oleoabundans 35-54 

Nitzschia sp. 45-47 

Schizochytrium sp. 50-77 
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Figure 2.3: The variation of growth rate with lipid content (Williams and Laurens, 2010).  
 

The conversion of microalgal photosynthesis products into the three major 

biochemical categories incurs a metabolic penalty in the form of loss of mass. Williams and 

Lauren (2010) developed a general equation that could predict the biomass yield during the 

biosynthesis of lipids, proteins, and carbohydrates: 

Y=1/(1.11C + 1.7P+2.6L)                        (2.4) 

where 

Y= biomass yield in mass per mass hexose synthesized 

C= carbohydrate content (%) 

P= protein content (%) 

L= lipid content (%) 

The assumptions for application of Equation 2.4 include C+P+L=1, and the protein to 

carbohydrate ratio is 3:2; there the above governing equation can be simplified to: 

Y=1/(1.46+ 1.14L)                                (2.5) 

Based on this equation, the productions of biomass partitioning into lipid, protein, and 
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carbohydrate can be estimated: 
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These three equations can be used to model and estimate lipid, protein, and 

carbohydrate productions during the biosythesis in microalgae culture systems.  

2.2.3 Factors Affecting Lipid Productivities  

Microalgal lipid yields rise obviously under stress conditions imposed by chemical or 

physical environmental stimulus (Sharma et al., 2012). Nutrient starvation, salinity, and 

growth-medium pH are identified as major chemical stimulus that would affect lipid 

accumulation; temperature, light, and turbulence are considered as major physical factors.  

Nutrient availability has a major effect on microalgae growth and lipid content. When 

nutrients are limited, the cell division rate is steadily declining, resulting in active 

biosynthesis of lipids with enough light and CO2 available for photosynthesis (Thompson, 

1996). Based on previous studies, nitrogen limitation is the most critical nutrient affecting 

biofuel production in microalgae. Because nitrogen is the most growth-limiting factor for 
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microalgal metabolism and would be one of the first nutrients to be depleted during 

microalgae cultivation (Basova, 2005). Nitrogen starvation technique is widely studied in 

almost all the microalgae species, since it is also relatively easy to apply controlled nitrogen 

stress on microalgae by subtracting the nitrogen source in the microalgae cultivations 

(Merzlyak et al., 2007).  

Study on the effects of salinity and pH have also been shown to effect lipid 

compositions of microalgae. Azachi et al. (2002) reported that an increase of NaCl 

concentration in cultivation of Dunaliella salina resulted in an increase in lipid content. 

Moreover, change of pH in the medium also alters the lipid composition of microalgae. 

Alkaline pH stress leads to neutral lipid accumulation in most green microalgae, and also 

leads to a decrease in membrane lipids (Guckert et al., 1990).   

Temperature has been found to have a significant impact on the fatty acid 

composition of microalgae (Guschina, 2006). A general trend of increasing unsaturated fatty 

acids in response to decreasing temperature has been reported in numerous species of 

microalgae (Renaud et al., 2002). It is generally accepted that as membrane fluidity decreases 

at lower temperature, the unsaturation of fatty acid increases, thus providing an adaption to 

the changing environment. Temperature also affects the total lipid content in microalgae. For 

example, Nannochloropsis salina exhibits a very low grow rate and lipid production at 

temperature above 25 ℃, because this temperature lead to an abrupt interruption of 

microalgal growth and later the cell dead on further period of cultivation (Sayegh and 

Montagnes, 2010). Nannochloropsis salina have the optimal cultivation growth temperature 
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at temperature around 20 ℃ (Brown and Jeffrey, 1992). 

Light is the most important factor for photosynthesis and lipid production. Different 

light intensities and wavelengths have been reported to change the lipid metabolism in 

microalgae altering the lipid profile (Harwood, 1998). A general trend towards increases in 

the amount of neutral storage lipids with decreasing membrane lipids have been observed on 

high light intensity condition, whereas low light intensity decreases the level of neutral lipids 

(Brown et al., 1996; Khotimchenko and Yakovleva, 2005). It is generally accepted that high 

light intensity increases fatty acid synthesis to produce more of the saturated fatty acids 

which in turn are stored as neutral lipids.  

2.3 Microalgae Cultivation System 

Algae cultivation can be achieved in either open ponds or photobioreactors, both 

varying in their advantages and challenges. To meet the increased demand for 

microalgal-based oil productions, it requires the development of highly efficient cultivation 

systems capable of low-cost production. While various cultivation systems have been widely 

investigated, there is a general consensus that the major barrier is the scale-up of these 

systems with economic feasibility. Based on numerous studies of this topic, open and closed 

systems are considered as the two most viable categories for large-scale commercial 

algae-based productions.  

In February 2012, the Bioenergy Technologies Office announced a funding 

opportunity to support outdoor phototrophic algae R&D in two areas: (1) development of 
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integrated cultivation systems for algal production that demonstrate minimal nutrient and 

water inputs; (2) the development of algal technology testbed facilities (DOE/ASAP, 2012).  

2.3.1 Open Pond Systems 

Open ponds are the most common systems of algae cultivation. Of these raceway 

ponds have risen to be the predominant type studied because they are easy to operate 

(Richardson et al., 2012). In raceway ponds, algae, water and nutrients circulate around a 

race-shaped pond with paddlewheels providing the flow (Figure 2.4). Although open ponds 

have advantages of being low-cost and easy to operate, they are sensitive to contamination 

from unwanted organisms leading to the loss of algae biomass production. Another reason for 

low production and photosynthetic efficiency in open ponds is due to the long light path, 

which causes self-shadowing which also results in reduced utilization of CO2 from gas 

streams. Other environmental factors such as temperature and microbial contaminants also 

reduce production. These disadvantages have led to the design and development of enclosed 

indoor photobioreactors (Watanabe et al., 2007).  
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Figure 2.4: Raceway-shape culture ponds in an outdoor algae farm (Seambiotic Co., 2010).  

2.3.2 Photobioreactors 

A photobioreactor is a closed device that provides a controlled environment and 

enables high productivity of algae. They have been successfully used for producing large 

quantities of microalgal biomass (Carvalho et al., 2006). As a closed system, photobioreactor 

offers better control the aspects of culture environment, such as light, carbon dioxide, pH, 

temperature, and water supply. The closed systems include the serial turbidostat, tubular, 

flat-plate, and column photobioreactors.  

The serial turbidostat reactors were originally designed as a combination of enclosed 

photobioreactors and open systems to sustain low cost production (Rusch and Malone, 1998). 

As an example, a Hydraulically Integrated Serial Turbidostat Algal Reactor (HISTAR) 

system which was able to maintain high-quality monoculture of suspended microalgae by 

applying the hydraulically washout concept, has proven to be promising (Benson, 2003). 

This system was recently used to establish a mechanistic model to predict microalgal 
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productivity in order to establish practical feasibility for large-scale applications. 

The critical design requirement of the photobioreactor is the illumination surface area 

per unit volume, which gives an efficient high surface area to volume ratio (S/V ratio) 

(Ogbonna and Tanaka, 1997). Flat-plate and tubular photobioreactors are the most widely 

used closed systems of photobioreactors due to their high S/V ratio (Ogbonna and Tanaka, 

1997).  

2.3.3 Types of Photobioreactor 

The selection of the photobioreactor depends on its ability to maximize productivity 

and photosynthetic efficiency, which is the case for the flat-plate, serial turbidostat, and 

tubular reactors (Tredici and Zittelli, 1998).  

The tubular photobioreactor consists of straight or coiled tubes arranged in various 

ways for maximizing the capture of sunlight (Figure 2.5). It has advantages of a larger 

illumination surface area, good biomass productivities, and better CO2 transfer from the gas 

stream to the liquid culture medium. On the other hand, one of the major limitations of 

tubular photobioreactor is poor mass transfer. For instance, very high dissolved oxygen levels 

inhibitive to algal growth are easily reach in tubular photobioreactors (Molina et al., 2001). 

More limitations include: self or mutual shading by the algal cells which causes the light to 

be attenuated above the bottom of the culture, a decrease in light-saturated photosynthetic 

capacity (light and dark zones), and high cost of operation (Tredici and Zittelli, 1998). 

However, these limitations are even worse in open ponds or deeper reactor.  
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Figure 2.5: A tubular photobioreactor with parallel run horizontal tubes (Molina et al., 2001).  

Flat-plate photobioreactors are comprised of transparent flat plates in which algae are 

cultivated (Figure 2.6). Flat-plate photobioreactors have received much research attention 

due to the large surface area exposed to illumination and high densities of photoautotrophic 

cells (Samson et al., 1985; Hu et al., 1998). Flat-plate photobioreactors are made of 

transparent materials for maximum solar energy capture, and a thin layer of dense culture 

flows across the flat plate, allowing radiation absorbance in the first few millimeters of 

thickness (Hu et al., 1998). When compared to tubular versions, flat-plate photobioreactors 

are more suitable for mass cultures of algae due to low accumulation of dissolved oxygen 

and the high photosynthetic efficiency achieved (Richmond et al., 2003). However, they also 

have some limitations, such as: scale-up requires many compartments and support materials, 

culture temperature is difficulty to control, any degree of wall growth blocks light, and there 

is an increased possibility of hydrodynamic stress to algal cells.  
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Figure 2.6: Experimental thin-layer flat-plate photobioreactor (Xu et al., 2011).  

Hydraulically integrated serial turbidostat algal reactor (HISTAR) provides a robust 

system that superimposes suspended contaminant control on algal production, which takes 

advantage of the positive attributes of enclosed and open-tank reactors (Rusch et al., 2003). 

HISTAR consists of two sealed turbiodostats and a series of open, hydraulically connected, 

continuous flow stirred-tank reactors (CFSTRs) (Figure 2.7) (Benson et al., 2003). The 

sealed turbidostats produce a high quality monoalgal inoculum that is injected into the first 

CFSTR (Benson et al., 2003). This inoculation occurs at 10 minutes intervals and is 

automatically controlled to vary in duration in response to the turbidostat biomass density 

(Rusch and Christensen, 2007). HISTAR has advantages of providing reliable high quality 

monoculture of suspended microalgae through a series of linked turbidostats or chemostats 

(Benson et al., 2007).  
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Figure 2.7: HISTAR system with two sealed turbidostats and the eight CFSTRs (Benson et 
al., 2003). 

2.3.4 Flow Description 

Culturing algae requires the input of light as an energy source for photosynthesis and 

a sufficient supply of nutrients in dissolved form in the culture medium. Biomass 

sedimentation in tubes is prevented by maintaining highly turbulent flow. Flow is produced 

using either a mechanical pump or a gentler airlift pump (Christi, 2007). First, the flow 

progresses to the diaphragm pump which moderates the flow of the algae into the actual tube 

from the feeder vessel. CO2 is dissolved into the cultivation systems from the CO2 inlet 

valve. Environmental parameters including light, pH, and temperatures are controlled in the 

photobioreactor in order to promote algal growth rates. A cleaning system inside the 

photobioreactor is beneficial to clean tubes without stopping the production. After the algae 

have completed the flow through the photobioreactor, it passes back to the feeder vessel. The 
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algae grow as the flow continues. When the algae are ready for harvesting, it passes through 

the connected filtering system.  

Photosynthesis generates oxygen which cannot be removed within a photobioreactor 

tube, resulting in limitation of the maximum period length of a continuous run tube. The 

culture must periodically return to a degassing zone that is bubbled with air to strip out the 

accumulated oxygen (Christi, 2007). As the culture moves along a photobioreactor tube, the 

pH increases because of consumption of carbon dioxide (Molina Grima et al., 1999).So 

carbon dioxide is fed into the culture in the degassing zone in response to a pH controller. 

Additional carbon dioxide injection points may be necessary at intervals along the tubes to 

prevent carbon limitation and an excessive rise in pH (Molina Grima et al., 1999).  

2.4 Light Dynamics and Growth Kinetics 

2.4.1 PAR (Photosyntheticly Active Radiation) 

Light availability is the most important factor in the growth and productivity of 

photosynthetic microalgal cultures (Kirk, 1994). When a beam of light reaches an aquatic 

layer, the number of photons are attenuated with depth in three ways: by particulate 

scattering, by absorption, or by transmittance (Benson, 2003). The sum of the absorption and 

the scatter represents the attenuation of the incident light (Kirk, 1994).  

Photosynthetically Active Radiation (PAR) is the spectral range of solar light from 

400 to 700 nm that is used by aquatic plants and algae in photosynthesis (Thimijan and Heins, 

1983). The range of visible light (400-700 nm) represents the range of energy that is most 
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useful to the plant in photosynthesis, and other longer or shorter wavelengths are ignored 

(Thimijan and Heins, 1983). The PAR range of the spectrum contains 45% of the energy at 

the earth’s surface (Kirk, 1994). It can be measured either as photon flux of incident or scalar 

light or as radiation energy. In the field of microalgae research, irradiance is usually taken as 

the total amount of PAR reaching a point from all directions (scalar irradiance), photon flux 

fluency rate (PPFFR). 

The scalar PAR is the photon flux fluency rate at a given point available for 

photosynthesis and algae growth, and is considered to be the most representative of the light 

energy available to an algal cell within a photobioreactor since cells do not discriminate 

between photon directions for photosynthesis (Acien Fernandez et al., 1998; Benson and 

Rusch, 2006).  

2.4.2 Surface Radiation 

For a given point light source, the irradiance at the impacted surface can be 

determined using the inverse-square law, which states that the light intensity is inversely 

proportional to the square of the distance from the light source (Kimball, 1923; Beiser, 1973). 

This gives us the definition of the incident irradiance ( oI ) at the surface of the microalgal 

cultures: 

2D
I

I s
o =                                   (2.1) 

where: sI = the PAR from the light source ( m mol s-1) 

       =D the distance of the light source (m). 
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However, most artificial light sources are fitted with collimating lenses or reflectors 

to redirect the light into parallel beams, which can drastically distort the relationship 

presented in Equation 2.1 (Benson and Rusch, 2005). Each type of light source can be 

empirically determined by a simple linear equation. The photosynthetic photon flux fluency 

rate (PPFFR) is used to quantity the scalar PAR quantum irradiance measured from all 

directions (Shibles, 1976). Therefore, the PPFFR at oI  as a function of light source distance 

(D) can be described by the following linear equation over the narrow range of elevation 

(Benson, 2003): 

DkII aDo o
-=                             (2.2) 

  

Where: 
oDI = the theoretical oI  if D where equal to 0 (m mol s-1m-2) 

       ak = the change in oI  for each cm change in D ( m mol s-1m-2cm-1). 

2.4.3 Irradiance inside Culture 

The Lambert-Beer Law represents a reasonable approach for the investigation of light 

attenuation within natural water bodies (Molina Grima et al., 1999). The assumption for 

application of this law includes low biomass density, monochromatic light, and unidirectional 

light path (Benson and Rusch, 2005; Dubinsky and Berman, 1979). In photobioreactors, the 

scalar PPFFR at a given distance of penetration is normally calculated following the 

exponential Lambert-Beer Law (Equation 2.3) where the light attenuation at a given distance 

of penetration (z). It derived from the total biomass (Xz) per volume contained in the layer 

penetrated (Huisman, 1999; Benson, 2003): 
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Zk
oz

oeII -=                               (2.3) 

where: =zI the scalar PPFFR (µmol s-1m-2) at z depth of penetration 

       =oI the PPFFR surface intensity (µmol s-1m-2) 

       =ok  the culture attenuation coefficient (Lmg-1cm-1) 

        =z  distance of penetration (cm) 

 

Furthermore, the average irradiance (Ia) is the amount of light received by an average 

cell moving randomly inside the culture. Ia is impacted by the incident irradiance, biomass 

and the culture penetration and can be determined by the following equation over the 

penetration of the reactor (Ogbonna et al., 1995): 
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where =ok  the culture attenuation coefficient (Lmg-1cm-1) 

      Io = the PPFFR surface intensity (µmol s-1m-2) 

      z = the penetration of the reactor (cm) 

      d = the thickness of the reactor (m) 

The relationship between Ia and X through experimentation at constant Io and variable 

X can be determined using equation 2.4. This relationship is used in the study of the effects 

of Ia on growth rates.  

2.5 Growth Kinetics 

Different growth models have been proposed in the past several decades, but most of 



www.manaraa.com

 

28 
 

                                  

them disregard the photoinhibition effect that may occur at the higher irradiance levels of 

artificial light and in natural light. To take photoinhibition into account, several microalgal 

growth kinetics models have been proposed (Table 2.3). Comparing the models shown in this 

table, researchers found that Steele (1977) and Molina Grima et al. (1993) model had the 

highest r2 values, though all required parameter adjustments in response to extreme 

self-shading effects (Molina Grima et al., 1996).  

In cultures where self-shading is high , a hyperbola is the better model to reflect the 

peak of the relationship between μand Ia (Acien Fernandez et al., 1997). Steel’s growth 

model acknowledges that growth is limited by low irradiance levels and inhibited by high 

light levels (Chapra, 1997). Steels’s model is one of the simplest that acknowledge that 

growth is inhibited at high light levels and is adequate for modeling growth in shallow 

reactors (Steele, 1977): 

Steele’s: opt

a

I

I

opt

a e
I
I -

=
1

maxmm                     (2.5) 

Where: Iopt = the optimum PPFFR that provides for ( maxm ) 

      µ= growth rate (d-1) 

      Ia= average PPFFR. 
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Table 2.3: R2 values for five different growth models as reported for three experimental series 

(Molina Grima et al., 1996). 

Source 
Experimental Series 

A             B           C 
Model 

Molina Grima et al., 1993 0.995 0.997 0.995 m
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M = mortality rate; r = ration Io/Ia; Ki is a fitting parameter 

2.6 Previous Studies of Mechanistic Modeling 

A mechanistic model which describes biomass growth and lipid productions is a 

crucial tool for predicting lipid production with respect to light dynamics and growth kinetics 

in the microalgae cultivation systems. It is necessary to develop a numerical model that takes 

environmental conditions, such as light and nutrient availability, into account for lipid 

production in order to gain insight into productivities and identify optimal process 

conditions. 

Mechanistic modeling, using first-order microalgal growth kinetics combined with 

reactor kinetics, was used to simulate the light dynamics and microalgae growth kinetics on 
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system productivity (Rusch and Malone, 1998; Benson et al., 2007). This modeling approach 

used in prior studies. Benson et al. (2007) developed a mechanistic model to investigate the 

impacts of internal light dynamics on system productivity in HISTAR. They found that the 

average scalar irradiance within the cultures can be determined by integrating Lambert-Beer 

Law over the culture depth, and the growth rate can be estimated by using Steele’s equation 

(Steele, 1965) in moderate density cultures and accounts for photoinhibition. They also 

showed that the biorhythms in the modeling of microalgal productivity can significantly 

enhance the accuracy of productivity forecasting (Benson et al., 2007).  

Droop model (Droop, 1998) is a simplest model for describing microalgae growth 

under a nutrient (nitrogen or phosphorous) limitation. Drrop model considers that the 

biomass growth (x0 is related to the limited nutrient quota (qn), while nutrient uptake 

depends on the external concentration of nutrient (s) : 
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where D is dilution rate, sin is the influent nutrient concentration, )(sr  is the absorption rate 

which is generally taken as Michaelis-Menten, and )( nqm  is the growth rate. In this model, 

)( nqm  can be represented as follows:  

)( nqm  = )1(max
n

o

q

Q
-m                              (2.7) 

where Qo and maxm are the minimal cell quota and the maximum growth rate, respectively.  

Various models have been proposed to predict lipid synthesis and microalgae growth 
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with respect to nutrients and light. Grognard et al. (2010) proposed a simple bioreactor model 

accounting for light attenuation in the reactor under the influence of day/night cycles due to 

biomass density to obtain the control law that optimizes productivity. They applied the 

Monod model (Monod, 1942) and Beer-Lambert Law to deal with substrate limitation, light 

attenuation, and light periodicity; then biomass productivity optimization was presented in a 

constant light environment. They found that because of the day-night constraint, the 

productivity rate is lower than without it; when the maximal growth rate is larger than the 

respiration rate, the maximal productivity rate can be achieved.  

Packer et al. (2011) developed a mathematical model that describes neutral lipid 

production of green microalgae grown in batch cultures for nitrogen-limited conditions. In 

this model development, nitrogen-limited growth took the form of the well-established Droop 

model (Droop, 1998), and the model for chlorophyll synthesis coupling with nitrogen uptake 

was directly adopted from Geider et al (1998). They found that neutral lipid production can 

be simplified within the framework of ecological stoichiometry. They also deduced that the 

decoupling of photosynthesis from cellular growth is a possible explanation for excessive 

neural lipid production. Mairet et al. (2011) proposed a dynamical model of microalgae 

growth in photobioreactors in order to further optimize neutral lipids and carbohydrates 

productivities under light and nitrogen limitations: 

)()()( sqqqq nlnl grmb --=                       (2.8) 

where lq is the neutral lipid quota, and g  is the parameter which can be computed from the pervious 

equations using measurements obtained at equilibrium. This model gathers two modeling 
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approaches based on Droop model (Droop, 1998) which was initially established to represent 

the effect of B12 vitamin internal quota on the growth rate of phytoplankton, and the 

experimental validation which was carried out under constant light. The light distribution 

inside the photobioreactor was computed using a Beer-Lambert Law. The model was 

assessed with experimental data under day/night cycles, and finally was used to predict 

carbohydrate and lipid productivities (Figure 2.8).   

While there are existing models of microalgae growth and lipid production with 

respect to both light and nutrient limitation, it remains a significant research area with need 

for more mechanistic models of lipid production to help improve the production process 

(Klausmeier et al., 2008). These published models of microalgal lipid production can be used 

under both nutrient and light limitations, so no models for microalgal lipid synthesis with 

nutrient replete conditions have been developed to predict lipid production. Additional 

limiting factors of lipid production besides nutrients, such as temperature, CO2 supply, and 

turbulence, are needed to consider in future model development. In future model 

development, it is necessary to combine existing models and frameworks in order to model 

lipid production and biological process in microalgae photobioreactors. The model to be 

formulated in this study can be used under nutrient replete condition, is largely based on 

stoichiometry, fundamental physiological processes, and environmental factor responses that 

governing lipid production. This model is designed to improve the biomass and lipid 

production process and gain a better understanding of biological processes in the flat-plate 

photobioreactor.  



www.manaraa.com

 

33 
 

                                  

 

 

Figure 2.8: Neutral lipid and carbohydrate quotas during a continuous culture of Isochrysis 
affinis galbana under day/night cycles: comparison between model simulation (red lines) and 
experimental data (symbols) (Mairet et al., 2011).  
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Chapter 3: Materials and Methods 

3.1 Organisms and Culture Method 

The microalga used in this study was Nannochloropsis salina from the Texas AgriLife 

Research Center at Corpus Christi. Four fully automated and controlled environment 

photobioreactors (FACE 4) (111.76 cm x 51.12cm x 10.16 cm) were used to grow 

Nannochloropsis s. under various experimental conditions (Figure 3.1). Illumination was 

provided by two 400 watt metal halide lamps per reactor. The FACE 4 Photobioreactors 

where designed to optimize the exposure of the algal cell to light by minimizing the thickness 

of the culture (Z), controlling cell light/dark cycling frequency (n ), system dilution rate (Ds), 

the light spectrum for the subject species, culture density (X), and the lamp distance (D). 

 
Figure 3.1: FACE 4 photobioreactor systems at the Microalgae Physiology Laboratory at the 
Texas AgriLife Research and Extension Center in Corpus Christi. 
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3.2 Experimental System and Operation  

The FACE 4 is comprised of four individual flat-plate type controlled automated 

bioreactors (CAB). The experimental units in this study where operated as individual batch 

CABs with water, nutrients, air and CO2 inflows and outflows (Figure 3.2). The CABs not 

only provided better experimental control, but also replication with the four reactors 

contained in FACE 4. The light intensity was measured via quantum sensors which were 

distributed in the reactor as shown in Figure 3.2. Scalar radiation was also monitored by 

using a bulb quantum sensor (Li-193 SA, Li-Cor Inc., U.S.A.) under different culture 

dilutions. Monitor systems were placed throughout the photobioreactor to measure the 

amount of CO2 injection, temperature, pH, and nutrients injection.  

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

Nutrient / Water Injection

CO  In2

Quantum
  Sensor

Light Source

 

Figure 3.2: Front and side views of one CAB at FACE 4 systems. 
 



www.manaraa.com

 

36 
 

                                  

3.3 Experiments 

Three sets of experiments were conducted to determine the following relationships in 

the FACE 4 system: (1) The light distance study: surface PPFFR (Io(PAR)) as a function of 

light source distance (D); (2)The light attenuation study: depth and biomass concentration 

dependent scalar irradiance (Iz(PAR)); (3) The growth kinetic study: specific growth rate (µ) 

as a function of average scalar irradiance (Ia(PAR)). Some basic methods were applied during 

each of these studies 

Measurement of biomass by manual cell counting under a microscope was used to 

determine algal biomass density in the reactor daily. Measurement of alga biomass was also 

made on samples filtered through a pre-weight 0.45µm Durapore Membrane Filter 

(Millipore). The filter paper was dried well in an Isotemp Standard Lab Oven (Fischer 

Scientific, U.S.A.) at 80℃ for 24 hours before it was weighed again. The final dry weight of 

biomass concentration in the sample was assumed to be the difference between the final filter 

weight and the initial filter weight. Scalar radiation was monitored using a bulb quantum 

sensor as well as quantum sensors distributed on the surface of the reactor. Instantaneous 

PPFFR readings were recorded by data logger (LI-1400, Li-Cor Inc., U.S.A.) after the 

quantum sensor had stabilized.  

3.3.1 Light Diffusion Study 

The purpose of this study was to investigate the relationship between the distance of 

the light source from the surface of the CAB and diffusion of light through air. The diffusion 
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coefficient Ka describes the change in Io with each cm change in D. Distance was considered 

to be the horizontal distance from the center of the metal halide lamp to the surface of the 

CAB. In the experiment, surface PPFFR was measured for each light source at three different 

distances (10.12-46.5 cm) in front of the CAB using quantum sensors on the surface of the 

experimental unit. Duplicate readings were taken for all four CABs. Quantum sensors at the 

surface of each CAB were distributed at incremental values from the center to the bottom and 

top at each horizontal level (center, 20.23 cm), and they were also distributed from center to 

the sidewall of the reactor at increment of 17.78 cm at vertical cross-section (Figure 3.2). 

The two light sources were carefully centered to ensure symmetrical light distribution 

over the surface of the CAB. This symmetry divides the reactor into three concentric rings 

having radii 10.16 cm, 25 cm, and 40.886 cm (Figure 3.3). Data collected at three rings 

represented the surface irradiance within these rings. The PPFFR within each ring was 

weighted based on the proportion of the area within the corresponding concentric ring to the 

total surface area. The average surface PPFFR for the reactor was determined by the average 

PPFFR of three rings. A best-fit regression analysis of Io versus D data was performed, and 

the relationship parameters were obtained.  
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Figure 3.3: Diagram of symmetrical light distributed as three concentric rings for each lamp 
over the surface of the CAB.  

3.3.2 Light Attenuation Study 

In this study the relationship between scalar irradiance at a given depth of penetration 

in the culture and cell concentration was investigated. According to the Lambert-Beer Law 

the overall scalar attenuation coefficient (ko) describes the decrease in scalar irradiance as the 

concentration of biomass and culture depth increases. Ko can be linearly partitioned between 

attenuation due to water and impacted by the biomass. So ko can be described in the 

following equation: 

                           ko= kb + kw                               (3.1) 

where: kb = attenuation by Nannochloropsis s.  

 kw = attenuation by water. 
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In the experiment, light attenuation studies were performed at five different values of 

biomass (X = 0 mg/L to X = 787.2 mg/L). Two lamps were centered horizontally in front of 

the reactor and the PPFFR was measured in suspensions of known biomass concentration at 

three different distances of penetration from the front side of the reactor to the back. At each 

distance of penetration, readings were taken at nine different locations in the same vertical 

plane by using the bulb quantum sensor (Figure 3.2). PPFFR was measured at 2.54 cm 

increments of penetration. At each increment of penetration, duplicate readings were taken 

from the center to the sidewall at 20.23 cm increments (center, 20.23cm), as well as taken 

from the center to the sidewall of the reactor at increment of 17.78 cm at vertical increments 

to the top and bottom of the reactor (Figure 3.2). So a total of nine light were recorded at 

each increment of penetration. Weighted means of Iz were calculated for each incremental of 

penetration by the same method used in the light diffusion study. An exponential regression 

of the Iz versus distance of penetration (z) was developed for each of the data sets, and the 

light attenuation coefficient (ko) was estimated by regression analysis for each study.        

3.3.3 Growth Kinetics Study 

Growth studies were performed in a 1 L New Brunswick Scientific fermentor to 

determine the specific growth rate (µmax) of Nannochloropsis salina collected from Texas 

AgriLife research at Corpus Christi. During the growth study, illumination was provided by a 

120 W metal lamp (Philips Lighting Company) at a constant distance of 47 cm (Figure 3.4). 

Temperature in the fermentor was controlled at room temperature (25 ℃), and the speed of 
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mixings was kept at 200 rpm. A mini air pump was used to supply air in the fermentor. 

Temperature and pH of the media were monitored by automatic mini pH Control System 

Model pH-40 (New Brunswick Scientific Co., U.S.A.). 

  

 
Figure 3.4: Experimental set-up for the growth kinetics study. 

 

Samples were collected at six-hour intervals until the phase was stationary. OD was 

measured in the samples at 750 nm by using a DR 5000 UV-vis spectrophotometer (Hach 

Company, US). A growth curve was obtained from culture grown during the growth study. 

The maximum specific growth rate (µmax) of algae is the maximum slop of the trend line in 

the plot of the natural log of dry cell weight concentration verse time.  

The relationship between biomass and OD was determined at the end of the growth 

study by diluting the culture to five concentrations. At each dilution, biomass concentration 
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was measured by filtering the 10 ml sample through the pre-weight 0.45 µm acetate filter. 

The filter paper was dried in an Isotemp Standard Lab Oven (Fischer Scientific, USA) at 80

℃ for 24 hours, and then was re-weighed after cooling down at room temperature. The dry 

weight of each dilution was the weight difference between the final weight and the initial 

filter weight. The values of OD and dry weight biomass collected at each dilution were used 

to determine a calibration curve of biomass concentration. Thus OD values collected at every 

6 hour intervals were converted into cell dry weight concentration using this calibration 

curve.  

3.3.4 Total Lipid Analysis 

Microalgae lipid extraction was completed by the collaborators of this project in 

Department of Life Science at Texas A&M University-Corpus Christi. Lipid content of 

Nannochloropsis salina cultures generated from FACE 4 Photobioreactors were measured 

during various growth stages to determine lipid production. Lipid content was analyzed by 

using a procedure from the Folch method (1957). At the time of sample collection, TSS was 

measured to determine the biomass concentration in the sample. After spinning down and 

freeze drying samples of microalgae, 100 mg of dry sample was put into a 15ml falcon tube. 

The sample was homogenized by adding 2 ml of chloroform and 1 ml of methanol to the tube, 

and was orbited for 20 minutes at 50 rpm in an orbital shaker at room temperature. The 

sample was centrifuged at 2800 rpm for 10 minutes to recover the lipid phase. The lipids are 

soluble in the chloroform, which forms a dense layer at the bottom of the tube. In order to 
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separate the chloroform, methanol, and lipids from the rest of the cell materials, the top layer 

from the tube was poured off. The sample was then washed with 6 ml of 0.9% NaCl adding 

to the bottom layer left in the tube. After vortexing for some seconds, the sample was 

centrifuged again at 2800 rpm for 10 minutes to separate into two phases. The lipids and 

chloroform create the bottom layer, while the methanol and water form a top layer. To 

separate the NaCl and methanol from the lipids and chloroform, the bottom layer in the tube 

was removed using a transfer pipette, and then it was transferred into a pre-weighed 

scintillation vial. The scintillation vial was dried well on a hot plate at 80 ℃ for 24 hours in 

order to evaporate the chloroform and leave only lipids. The end product in the scintillation 

vial was weighed, and the final weight was subtracted from the scintillation vial weight. Then 

the final weight was divided by the weight of the original sample to gain the lipids content 

(Clipid). The lipid production (Pl) was calculated by the following equation: 

T

XC
P lipid

l

´
=                               (3.2) 

where,  
Pl = lipid production (gl-1d-1) 
Clipid = lipid content of cells (%) 
X = dry cell weight (g/l) 
T = the cultivation period (days)  
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Chapter 4: Results and Discussion 

Studying light dynamics and growth kinetic in experimental units was essential to 

provide operational data for the FACE 4 photobioreactor. A series of experiments were 

performed to examine fundamental process relationships and determine the parameters, 

involving light attenuation, microalgae growth kinetics and suspended biomass 

concentrations. 

4.1 Light Diffusion Study 

Light diffuses as it passes through air, and then it is attenuated by walls, water and 

biomass as it continues to penetrate the culture. It is necessary to study the travel pathway of 

photons from the light source to the surface of the reactor, so that the PPFFR diffused by air 

(Ioair) was determined. Ioair is the surface PPFFR at each CAB, which was measured by 

quantum sensors. 

The regressions relationship between surface PPFFR (Ioair) via air and distance (D) 

points from the light source for each of four CABs was investigated as shown in (Figure 4.1): 

Reactor 1:    Ioair = 916.12e-0.0240D                     (4.1) 

Reactor 2:    Ioair = 735.84e-0.0255D                     (4.2) 

Reactor 3:    Ioair = 1067.3e-0.0292D                      (4.3) 

Reactor 4:    Ioair = 894.38e-0.0241D                       (4.4) 

In Figure 4.1, it shows negative exponential relationships over the distances studied within 

four CABs. Each set of data had an r2 value of greater than 0.98. The relationship between 
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Ioair and D of FACE 4 photobioreactors used for model parameters is the average of data in 

these four equations, as shown in the following: 

Ioair = 903.07e-0.0257D                          (4.5) 

(for D = 10.12-46.5 cm; R2 = 0.9949) 

where 903.41 µmols-1m-2 is the hypothetical Ioair (PAR) at D=0, and 0.0257 cm-1 is the light 

energy dissipation coefficient constant (ka) for FACE 4 systems using two 400 watt metal 

halide lamps. Thus, light is diffused through air according to an exponential relationship over 

the distances studied with a diffusion coefficient ka of 0.0257 cm-1.  
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Figure 4.1: Relationship between surface PPFFR (Ioair) and lamp distance (D) at CAB 
surface. 

The light attenuation coefficient (kr) through the thickness of the reactor was 

determined by plotting the average PPFFR at both front and back sides of the CAB against 

the thickness under three different distance points of the light source (Figure 4.2). The 

thickness of the reactor included the 1.27 cm thick acrylic walls and clear saline within the 
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CAB. The results were averaged to yield a kr value of 0.062 cm-1 for the three different cases. 
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Figure 4.2: Relationships between surface PPFFR (Ioair) at both front and back sides of 
CABs and thickness at three selected distances from the light source. (a) distance =10.16 cm; 
(b) distance = 25.40 cm; (c) distance = 40.46 cm. 
 

Using these light attenuation coefficients, Io can be predicted over a range of D. The 

parameters obtained from the experiments will be used in modeling light dynamics in FACE 

4 photobioreactors.  

The surface PPFFR (Io) is Ioair going through 1.27 cm thickness acrylic walls of the 

CAB. Light attenuation occurs when light passes through the walls, because the plastic walls 

absorb and reflect lights. Studying Io will in turn determine the photon flux available at any 

thickness in the culture for a given light source. For the measurement of surface PPFFR, the 

bulb sensor was placed facing the light source in the culture such that the bulb was near the 

front wall of the CAB. Io was measured for different locations in the CAB, corresponding 

with quantum sensors distributed at the front side of the CAB during the prior studies. In a 
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constant biomass concentration, the measured surface PPFFR within the culture has been 

plotted against Ioair in Figure 4.3. The slopes of the regressions give values of the diffusion 

coefficient (kp) due to the acrylic walls. In 25%, 50%, 75%, and 100% biomass culture, the 

negative kp indicates light was attenuated by the walls. In the clear water, there are seven 

positive kp which indicate PPFFR was increased when light passed though the wall. It is 

probably due to light was reflected when it was incident on an interface between glass and 

water at these seven sensors. Errant data may also cause the positive kp, because these 

sensors were located at the place closing to the fluorescent lights on the roof. The sensors are 

very sensitive, so they may caught photons from the fluorescent lights under these 

circumstances. When light goes through the CAB of clear water, the surface of wall is like a 

mirror reflecting light, leading to a positive kp. Since kp varied over the nine locations in the 

CAB, an average kp was calculated under a given cell concentration. The averaged values of 

kp were then plotted against different cell concentrations in Figure 4.4. The kp was 

investigated for the different biomass concentration by the following equation:  

78.175)(608.55 -= xInk p                       (4.6) 
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Figure 4.3: Relationships between Io and Ioair under different biomass. 
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Figure 4.4: Light attenuation coefficient due to plastic walls (kp) as a function of biomass 
concentration. 
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Equation 4.6 was used to determine kp in model development. Based on Figure 4.3, 

the relationship between kp and Io can be best described by a linear equation (4.7) under 

different biomass. The 1.27 means the thickness of the acrylic wall.  

Io = kp´1.27+Ioair         (4.7) 

All the estimated parameters and relationships determined during this light study showed 

strong statistical correlation with experimental data having R2 values greater than 0.97.  

4.2 Light Attenuation Study 

4.2.1 Effect of Biomass and Culture Penetration on Average PPFFR (Iz) 

Understanding light dynamics within the culture is essential to study the behavior of 

algal growth activity in the reactor. At any distance of penetration into the culture, Iz is the 

mean of PPFFR taken at nine different locations in the same vertical plane. Culture 

penetration (z) was regressed against Iz for various cell concentrations to estimate light 

attenuation coefficient (ko), and this plot has been presented in Figure 4.5. Fitting to 

Beer-Lambert Law, values of ko and Iz were determined for each biomass study that is listed 

in Table 4.1. A similar study for ko of green microalgae in the HISTAR was ranged between 

0.1615 cm-1 to 0.9473 cm-1 (Benson and Rusch, 2005). The CAB is much thinner than the 

HISTAR, resulting in Ko value of 0.0098 cm-1 is much smaller than the value of 0.1615 cm-1 

reported by Benson and Rusch (2005) under the clear water condition.  
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Figure 4.5: A plot of PPFFR at a given of penetration (distance from the front side of a CAB) 
with respect to the penetration for different biomass concentration (X, mg/L).  
 

Generally, the average PPFFR decreased exponentially with increasing penetration. 

While in the clear water (X = 0 g/m3), Iz fell in the linear range of the exponential attenuation 

curve. The attenuation by the microalgae presented the typical declining exponential fit. 

Microalgae cells absorb light through photosynthesis which results in decrease of light in the 

media.  
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Table 4.1: Results of ko, Iz, and R2 obtained from the light attenuation experiments. 

Biomass concentrations, 

X (g/m-3) 

Iz (µmols-1m-2) R2 Light attenuation 

coefficient, ko(cm-1) 

0 388.09e-0.0098z 0.9999 0.0098 

273.23 388.09e-0.2203z 0.9367 0.2203 

426.74 388.09e-0.3611z 0.9729 0.3611 

565.10 388.09e-0.4526z 0.9753 0.4526 

787.20 388.09e-0.5383z 0.9581 0.5383 

 

4.2.2 Effect of Biomass on the Determination of Ko, Kw and Kb 

Ko for each study was regressed against the respective biomass concentration in 

Figure 4.6, yielding a linear partition:  

ko = 0.0326 + 0.0007X                      (4.8) 

It can be observed from equation 4.8 that light attenuation coefficient (ko) can be linearly 

partitioned into water (kw) and biomass (kb), where kb= 0.0007cm-1 and kw = 0.0326 cm-1. In 

other words, average irradiance in the culture decreased by the sum of Equation 4.8 per g dry 

wt/m3. Light attenuation linearly increases as biomass concentration increases. The 

attenuation due to the biomass (kb) is comparable to the kb value of 0.00064 cm-1 obtained by 

Kirk (1994) for outdoor algae cultures. Benson and Rusch (2005) reported that artificial 
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illumination produces similar attenuation patterns to those obtained for nature light. The 

attenuation due to water (kw) estimated in this study is high compared to the kw value of 

0.0016 cm-1 for seawater reported by Gallegos (1994). This is due to a shallow depth of the 

CAB compared to the depth of nature water. With an increase of water depth, kw is decreased 

due to wavelengths of less energy are absorbed in deep water (Kirk, 1994).  
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Figure 4.6: Linear regression between ko and biomass. 
 

4.2.3 Effect of Biomass on the Average PPFFR (Ia) within the Culture 

The relationship between average light in the reactor and biomass concentration was 

obtained by plotting PPFFR as dependent on X in the experimental unit (Figure 4.7). This 

relationship can be used to estimate the average PPFFR during transitional growth rate. An 

exponential trend curve fit the data, so average PPFFR can be generally predicted in equation 

4.9:  

Ia = xe 0027.069.296 -                        (4.9) 
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Figure 4.7: Average light irradiance as a function of biomass concentration in the FACE 4 
biophotoreactor.  

4.3 Growth Study 

A growth study was performed to investigate the impact of average scalar irradiance 

on the net specific growth rate of Nannochloropsis salina. Optical density (OD) values were 

measured in samples at every six hours. The data for the growth studies are given in 

Appendix C. OD values were converted into dry biomass densities using a calibration curve. 

The calibration curve (Figure 4.8) was generated using algae cells from the end of the growth 

study. The growth behavior of algae has been shown in Figure 4.9. The maximum specific 

growth rate (µmax) of algal cells was the maximum slope of trend line in the plot of the 

natural log of (biomass concentration) vs. time. It was obtained by fitting a best possible 

linear fit to the growth curve (Figure 4.9). As shown in Figure 4.10, the µmax for 

Nannochloropsis s. was 0.0521 h-1 or 1.25 d-1 as observed between 42 to 54 hours after 
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inoculation. The maximum growth rate was reported to be 1.3 d-1 in a previous study (Jon et 

al., 2012). In Jon’s growth study, the maximum growth rate was achieved by using high 

intensity fluorescent bulbs (250 µmolm-2s-1) at 23 ℃, while a 120 W metal lamp was used 

as illumination in this study. Thus, the µmax in this study is lower than other studies, probably 

because the thicker reactor and the different light source were used.   
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Figure 4.8: Calibration curve for cell dry weight concentration. 
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Figure 4.9: Natural log of biomass concentration during the growth study. 
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Figure 4.10: Maximum specific growth rate in this growth study.  
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Also, the photon flux densities were regressed against biomass concentration (Figure 

4.11) to study the relationship between PPFFR and biomass concentration. At the end of the 

growth study, the culture medium was diluted four times to obtain the specified cell 

concentration. The average irradiance for the final culture medium and the four dilutions 

were measured from bulb quantum sensor at proximal, central, and distal from the light 

source to the fermenter. Biomass concentrations for the four dilutions of the culture medium 

were calculated using the calibration curve in Figure 4.8 to convert corresponding OD values. 

Using the non-linear regression relationship that was found in Figure 4.11, the PPFFR in the 

fermenter was estimated for every 6-hour intervals by converting biomass concentration at 

each interval during the growth studies. Based on the regression illustrated in Figure 4.11 and 

measured biomass concentrations at 6-hour intervals, the relationship between the Ia (PPFFR) 

and biomass concentration was estimated for each time interval within the experimental 

range (Figure 4.12). The change in light and biomass throughout the growth study is plotted 

in Figure 4.12. The change in the average PPFFR over time during the growth study were 

inversely related to the biomass concentration.  

 



www.manaraa.com

 

57 
 

                                  

Figure 4.11: Calibration of photon flux vs. cell dry biomass concentration in the fermenter.  
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Figure 4.12: The change in the biomass concentration and light (average PPFFR) in the 
fermenter during growth study.  
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4.4 Lipid Analysis  

4.4.1 Total Lipid Productivity 

The percent lipid concentrations of dry weight biomass produced in each CAB of the 

FACE 4 photobioreactors at various growth rates was assessed by colleagues at the Texas 

A&M University-Corpus Christi. The total lipid content of biomass ranged from the 14% to 

19.5 % in the four CABs. From Figure 4.13, the highest lipids content was typically observed 

in the stationary phase and decay phase of the growth curve when growth rate was low (CAB 

1, 2, and3), while the lowest lipids content was exhibited toward the end of the exponential 

growth phase while growth rate was high (CAB 1, 2, and 3). The trends of lipid production 

and biomass concentration over cultivation period are similar to those in the literature 

(Williams and Laurens, 2010). As the growth rate increased the protein content of the 

biomass increased, the lipid content and lipid productivity decreased. As shown in (a) and (b) 

of Figure 4.13, Nannochloropsis salina had accumulated significant amounts of lipids by day 

4 of cultivation and reached maximum lipid content in the stationary growth phase. The lipid 

content of Nannochloropsis salina grown in this experiment was comparably to values 

reported in the literature (Mohammady, 2011). The lipid content was reported as high as 40 

% for Nannochloropsis salina under the nutrient limitation condition by Mohammady (2011). 

Although this experiment was unable to achieve such high lipid percentages, gaining the 

average lipid content of 17% was reasonable without optimization operating conditions. 

Previous study by Thompson et al (1990) found that the lipid content of biomass 

concentration was around 10% to 20% when the growth rate below 2 d-1. The lipid 
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production results in this study supported by previous study (Thompson et al., 1990) at the 

low growth rate range. The results also suggest that higher lipid production could be achieved 

in FACE 4 photobioreactors with nutrient limitation or optimization of operating conditions.  
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Figure 4.13: Lipid content and biomass growth during batch run in FACE 4 photobioreactors. 
(a) CAB 1; (b) CAB 2; (c) CAB 3; (4) CAB 4.  

4.4.2 Lipid Content as a Function of Growth Rate  

The relationship between lipid content and growth rate was determined using data 

from the lipid analysis study. The specific growth rate at the each time period prior to lipid 

analysis can be calculated using change in dry cell biomass concentrations over each time 

period. The net specific growth rate (µ) for each lipid collection period was calculated using 
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the Two-Point method (Levasseur et al., 1993). In Two-Point method, the growth rate was 

estimated by selecting two points in the log phase of each time period prior to lipid collection. 

Thus, µ was calculated using the formula: 

)(
)(

12

121

tt
InXInX

d
-
-

=-m                        (4.10) 

where X1 and X2 are the biomass dry weight (mg/L) at the first day (t1) and final day (t2) 

respectively in each time period prior to lipid analysis.  

Though not the correct approach, the relationship between lipid content and growth 

rate with lipid as the independent variable was investigated using the similar approach in 

prior studies (Shifrin and Chisholm, 1981; Thompson et al., 1990). Growth rate should 

actually be the independent variable which determines lipid content. When studying the 

overall relationship between lipid content and growth rate in the FACE 4 photobioreactors, 

CAB 1 and 2 data were used later for model calibration, while data from CAB 3 and 4 were 

used for model development. Based on the results of the lipid production and growth rate for 

each lipid collection period, an inverse relationship between lipid content and growth rate 

was found for each CAB. As shown in Figure 4.14, an inverse correlation between lipid 

content and growth rate were found in both CAB 3 and CAB 4 due to the relative high lipid 

production at low growth rate in these two CABs. The R2 value of this figure is 0.7534, 

0.4714, and 0.5132 for CAB 3, CAB 4, and CAB 3 & 4, respectively. This indicates a good 

exponential relationship between lipid content and growth rate. Shifrin and Chisholm(1981) 

and Thompson et al. (1990) reported a linear regression with R2 of 0.38 and 0.30 respectively 
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for this type of relationship. Thus the relationship between lipid content and growth rate was 

best modeled by an exponential relationship rather than a linear relationship due to a higher 

R2 was gained in the exponential function. For model development purposes, the relationship 

between µ and % lipid content was regressed with growth rate as the independent variable. 

Figure 4.15 containing data from CAB 3 and CAB 4 shows a significant non-linear 

regression relationship between lipid content and growth rate with growth rate as the 

independent variable. The R2 of the exponential equation in Figure 4.15 is better than an R2 

0.38 of liner relationship reported by Shifrin & Chisholm (1981). Again an R2 of 0.30 was 

reported by Thompson et al. (1990) for a similar study with liner relationship. Thus, it 

suggests that the exponential fit for all the data yielded good results compared to the linear 

regression found in other studies to model the relationship between lipid production and 

growth rate. Using Equation 4.11 given from Figure 4.15, the lipid production in FACE 4 

photobioreactors can be estimated by the model. Thus, the lipid production can be predicted 

using the following equation:  

y= 18.543e-0.5125x                                     (4.11) 

where 18.543 is the intercept and -0.5125 is the lipid production coefficient (kµ). The 

constant kµ of -0.5125 d-1 represents the declining effect that growth rate has an exponential 

relationship with % lipid of biomass content.  
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Figure 4.14: Lipid content vs. growth rate in CAB 3, CAB 4, and CAB 3 & CAB 4. 
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Figure 4.15: Exponential regression relationship between lipid content and growth rate.  
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Chapter 5: Model Development 

A mechanic model that integrates the mass balance analyses within the FACE 4 

photobioreactors with light dynamics (Lambert-Beer Law), biological Processes, and lipid 

production relative to growth rate was developed using StellaTM software. The mechanistic 

model was developed to represent the fundamental biological and physiological processes 

gaining lipid production by microalgae in the FACE 4 photobioreactors, such as mass 

balance, light effects on growth rate, nutrient stoichiometry on biomass production, and the 

partitioning of accumulated biomass into primary organic fractions.  

5.1 Introduction  

The mechanistic light and lipid production model follows the law of thermodynamics, 

light dynamics, stiochiometry and basic hydrology and mass balance. It is able to estimate 

the cellular partitioning of microalgae into lipid, proteins and carbohydrates as the 

environment of the photobioreactor changes. Biomass flows through the series of modules 

which governs biological and physiological responses. The important driving forces for 

microalgae productions, such as light, nutrient level, and temperature, were developed in the 

model. Among them, light is the most dynamic and complex optimization parameter. The 

production model was designed to understand the complex relationships between all of these 

optimization parameters and microalgal productivity in the FACE 4 photobioreactor. 

5.2 Data Acquisition  

Data acquisition for the model development has been discussed in Chapter 3 and 4. 
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The data used for the estimation of irradiance parameters were collected from a series of 

experiments in Chapter 3. These data were conducted in the model to estimate (1) surface 

irradiance (Io) as a function of lamp distance; (2) depth of penetration and biomass 

concentration dependent scalar irradiance (Iz); (3) average scalar irradiance (Ia); (4) specific 

growth rate (µ) and optimum irradiance (Iopt) as a function of Ia. The optimization parameters 

collected during all the parameters estimation experiments were determined by regression 

analyses and are summarized in Table 5.1.   
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Table 5.1: The summary of regression analyses statistics for experimental estimated 
parameters.  

 

Parameters Experimental 

Estimation 

R2 Process of Estimation 

Light parameters    

IDo (µmols-1m-2) 903.41 0.9931 Experimental data 

ka ( cm-1 ) 0.0256 0.9931 Experimental data 

kr (µmols-1m-2cm-1) 0.062 1 Experimental data 

kb ( cm-1 ) 0.0007 0.977 Experimental data 

Growth parameters    

µmax (day-1) 1.262 0.904 Experimental data 

Iopt (µmols-1m-2) 158  Experimental data 

Lipid parameters    

kµ (day-1) -0.5125 * 0.4031 Experimental data 

*calibrated parameter 

5.3 Model Development 

A mechanistic production model that estimates lipid production and biomass 

generated within the FACE 4 Photobioreactor was developed using the STELLA modeling 

platform (Figure 5.1). It will enhance our understanding of fundamental biological and 

physiological processes governing lipid production by microalgae in a flat-plate 
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photobioreactors. The complete conceptual mechanistic model is given in Appendix A.  

 

The conceptual mechanistic model includes incidence of PPFD, the average 

irradiance and its effect on microalgael broth, mass balance, CO2 uptake through 

photosynthesis, biomass production and the effect of growth rate on lipid production and its 

partitioning into major organic fractions. Biomass inflows and outflows through the 

continuous-flow stirred-tank reactors (CFSTR) are calculated reflecting mass balance, 

microalgal growth kinetics, lipid production, nitrogen, phosphates, and carbon consumptions 

at a unique specific growth rate. In the phosphate cycle, it is converted to biomass 

stoichiometrically. To figure out the balance as phosphate is transformed to phosphorous tired 

up as a mass balance equation was included in the model. The carbon cycle and nitrogen 

cycle are similar to the phosphate cycle using stoichiometry and mass balance to calculate 

how much is transformed into biomass. The carbon dioxide is also coupled to a pH cycle in 

the system. The dynamic specific growth rate (µ) is influenced by a sum of the average scalar 

irradiance (Ia), nutrient consumptions, temperature factor, maximum growth rate (µmax) and 

optimum light attenuation (Iopt).  
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Figure 5.1: The stella diagram of the FACE 4 Photobioreactor model 
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5.4 Governing Equations 

The behavior of one of four CABs of the FACE 4 photobioreactors was modeled in 

this study as a CFSTR. In the FACE 4 systems, it assumes that the composition is uniform at 

all points in the CAB. The mass balance in the CAB is dependent on the combination of 

influent flow rate (Qin) and biomass concentration (Xin), as well as effluent flow rate (Qout), 

net specific growth rate (µ), and biomass concentration (Xout). The governing equation for the 

CAB can be written as:  

XVkXVXQXQ
dt
dx

V doutoutinin -+-= m                (5.1) 

where, 

V = the volume of a CAB  

µ= net specific growth rate in the CAB 

Qin = influent flow rate  

Qout = effluent flow rate 

Xin = biomass concentration injected into the CAB 

Xout = biomass concentration harvested from the the CAB 

kd = the decay rate 

kd is increased by average cell age, which has been reported to be 0.1 d-1 for fresh water 

phytoplankton (Jorgensen, 1979). The term 
dt
dx

 of equation 5.1 represents the change in 

biomass concentration over time in the CAB providing for dynamic modeling. The net 

growth occurring in the CAB is a function of the maximum growth rate (µmax), effects of 

lighting dynamics, temperature, and nutrient parameters. These parameters impacting the 
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biomass densities in the CAB photobioreacter were gained from previous research (Benson et 

al., 2007) or estimated through experiments (Table 5.1). 

5.4.1 Growth Kinetics  

Algae grow as a function of temperature, nutrients, and light radiation. The governing 

equation (Chapra, 1997) for growth kinetics model can be developed as  

( ) ÷
÷
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where n, p, and CO2 are concentrations of available nitrogen, phosphorus, and carbon dioxide, 

respectively. Ks is the half saturation constant, which was calculated by prior studies (Chapra, 

1997). For green microalgae, ksn = 0.02 mgL-1 , ksp = 0.005 mgL-1  k
2sco = 0.02 mgL-1. DsF is 

the dilution factor which incorporates effects of change in self-shading effect, degassing and 

metabolite, and nutrient flushing (Benson et al., 2007).   

The first term ( )066.1( 25
max

-× Tm ) on the right-hand side of Equation 5.2 represents 

the effect of temperature on microalgae growth. Eppley (1972) proposed a coefficient value 

of 1.066 based on a number of studies, and this value can be used in temporization 

formulation. µmax was determined in specific growth experiments conducted at 25  ℃

environmental temperature. Temperature effect can be formulated mathematically by using 

the coefficient.  

The second term (
1+

-

opt

a

I

I

opt

a e
I

I
) represents the effect of the light on microalgae growth. 

Several factors have to be integrated to come up with the total light effect, including surface 
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light diffusion, light attenuation with distance of penetration and dependence of the growth 

rate on light. Steel’s (1965) equation was used for this term which accurately models growth 

in moderate density cultures and accounts for photoinhibition.  

The last term (min ÷
÷
ø

ö
ç
ç
è

æ

+++
22

2,,
scospsn kCO

CO

kp
p

kn
n

) represents how multiple nutrients 

effect the growth and are factored into estimation of growth rate. The approach was based on 

Liebig’s Law of the minimum, which means the nutrient in shortest supply controls growth. 

Each of the parameters impacting the specific growth kinetics is discussed further in the 

following subsections. 

5.4.2 Light Dynamics 

To estimate µ in the CAB, the average scalar irradiance Ia(PAR) must be calculated 

(Molina Grima et al., 1994). The second term (
1+

-

opt

a

I

I

opt

a e
I

I
) on the right side of Equation 5.2 

represents the effect that the average PPFFR (Ia) in the reactor has on growth rate µ. When 

the second term is multiplied by µmax, it converts to Steele’s equation (Steele, 1965). 

Steele’s equation can be used to model algae production in moderate density cultures and 

accounts for photoinhibition, which was experimentally determined to occur at Ia greater than 

360 µmols-1m-2 for metal halide light sources (Benson, 2006).  

To estimate the instantaneous average Ia, the model integrates the Lambert-Beer’s 

Law over the distance of penetration through the CAB at the instantaneous biomass 

concentration for each time step using Equation 2.4 ( ò
--

==
d

o

Xdk
o

a Xdk

eI
dzzI

d
I

o

0 )(

)1(
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1
). The 



www.manaraa.com

 

72 
 

                                  

light averaging component vertically slices the FACE 4 into three distances (z) of penetration 

intervals (Figure 5.2). The average scalar irradiance within each interval (Iz) can be 

determined by integrating the Lambert-Beer Law (Equation 2.3 of Zk
osz

oeII -= ). The average 

scalar irradiance within each interval was determined by experiments discussed in Chapter 4. 

All three intervals are averaged to calculate the average PPFFR (Ia), which can be used in 

Equation 5.2 to represent the effect of Ia on µ.  

 
 

Figure 5.2: Diagram of intervals in the FACE 4 as used in a light averaging component.  
 

The forcing function of the Ia is the surface irradiance (Io), which was estimated 

experimentally from light diffusion studies, as described in Equation 2.2 ( DkII aEo o
-= ). Io 

was estimated as discussed in Chapter 4, then it was utilized along with X and D in 

Lambert-Beer Law to compute Iz in the reactor. The Iz for each interval is averaged by the 

model to estimate Ia in the model.  
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5.4.3 Nutrients and Stoichiometry 

The governing equations for nutrient concentrations were based on biomass balance 

flow and stoichiomertric composition of organic matter. An adequate supply of nitrogen, 

phosphorus, and CO2 is imperative to ensure high lipid production in microalgal cultures. 

Inorganic nutrients are required in large quantities for microalgae cell development and 

hence are called macronutrients. The model development has focused on three 

macronutrients: phosphorus, nitrogen, and carbon. All these three macronutrients are 

important factors for microalgae growth. For example, phosphorus has a critical role in 

storage and transfer of cell energy; nitrogen not only acts as a fertilizer in algae growth, but 

also decomposes to form nitrite and nitrate which can be utilized by certain algae and 

bacteria; carbon plays a role as a nutrient and is a main component of biomass.  

As microalgae grow, they take up inorganic nutrients from the water in proportion to 

their stoichiometry. The stoichiometric composition of organic matter is an important factor 

in the process where production converts inorganic nutrients into organic biomass. The 

dry-weight composition can be idealized as the following representation of the 

photosynthesis/respiration process (Stumm and Morgan 1981): 

106CO2 + 16NH4
+ + HPO4

2-+ 108H2OÛ C106H263O110N16P1 + 107O2 + 14H+   (5.3) 

In this formula, C106H263O110N16P1 represents algae, so the mass ratio of carbon to nitrogen to 

phosphorus can be determined as percentages of dry weight (Chapra, 1997):  

C: N: P = 106 =´´´ 311:1416:12  40%: 7.2%: 1%         (5.4) 

Thus, the production of a gram of dry weight of algae utilizes approximately 10 mg of 
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phosphorus, 72 mg of nitrogen, and 400 mg of carbon. 

Dynamics for the nutrient concentration was obtained by applying mass conservation 

laws. Based on the governing equation of the CAB (equation 5.1), the nutrient loading 

equation based on mass balance can be expressed as (Chapra, 1997): 

nnnout
n VXksXQW

dt

dX
V --=                       (5.5) 

where V = the volume of a CAB (m3) 

     Xn = total nutrient concentration of a CAB (n = phosphorus, nitrogen, or CO2) (g/m3) 

     W = total nutrient loading rate (g/d) 

      t = time (d) 

     Qout = effluent flow rate (m3/d) 

      ks = a first-order settling loss rate (d-1) 

In the equation, the loss rate (ks) can be determined as ks =
wn tVX

W 1
- , where tw is the 

residence time. The nutrient loading approach was included in the model to investigate the 

effect of phosphorus, nitrogen, and CO2 concentrations on microalgae growth and lipid 

production.  

In the presence of light, microalgae consume carbon from dissolved CO2, while 

releasing O2.  Based on Equation 5.4, microalgae biomass is 40% carbon by dry weight. 

Since a mole of CO2 has a mass of 44 grams and 12 of these grams come from carbon, the 

amount of CO2 consumed to grow one gram of microalgae was calculated as following 

(Buehner, al et.2009):  
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mCO2 (g) =
aega

gCO

aega
gC

molgC

molgCO

lg
47.1

lg
%40

/12

/44 22 =´ =1.47malgae (g)        (5.6) 

In general, 1 gram of microalgae consumes 1.47 grams of CO2 to produce energy and 

biomass. Using the cell stoichiometry, the amount of the three nutrients consumed for 

biomass production can be calculated and simulated dynamically by the model.  

5.4.4 Lipid, Proteins, and Carbohydrates Partitioning  

Microalgae biomass break down into the basic products: lipids, proteins, and 

carbohydrates. A major challenge in algal production is maximizing the biomass with regards 

to lipids, carbohydrates, and proteins. The following equation used to calculate the lipid 

production in the FACE 4 photobioreactors was developed from the exponential regression 

equation of lipid production and growth rate (Figure 4.15), as shown in the following: 

L= 18.543e-0.5125µ                           (5.7) 

where L = lipid content (% dw). This equation is used in the model to demonstrate the 

outcome and potential of lipid content. As nutrient limitation affects growth rate, this 

provides an explanation for the negative relationship between growth rate and lipid content. 

Overall production of lipid is more complex than this lipid content analysis, as there are 

many other considerations. In order to calculate protein and carbohydrates fractions, it is 

assumed that the overall fractions of the three major biochemical classes are equal to one, 

which means C+P+L=100; and the protein to carbohydrate ratio is 3:2. Thus, the conversion 

of biomass productions into protein and carbohydrate fractions can be simply calculated:  

C = (100-18.543e-0.5125µ)*0.4                  (5.8) 
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P = (100-18.543e-0.5125µ)*0.6                  (5.9) 

where, 

C = carbohydrate content (% dw) 

P = protein content (% dw) 

Based on the three equations above, the productivities of lipids, proteins, and carbohydrates 

during the biosythesis in the reactor can be predicted in the model.  

The overall algae lipids have major class compositions of phospholipids, glycolipids, 

and triglycerides. For Nannochloropsis, the lipid class distribution derived from published 

analyses was as following (Williams and Laurens, 2010) : 

Phospholipids = lipids x 0.38                (5.10) 

Glycolipids = lipids x 0.39                  (5.11) 

Triglycerides = lipids x 0.22                 (5.12) 

These three types of lipids compose 99% of total lipids for Nannochloropsis, while the rest of 

1 % of lipids consists of fat-soluble vitamins and waxes. Using these equations in the model, 

the mean lipid class contents can be estimated. It is known that many factors lead to the 

variations in lipid class distribution. For example, triglycerides, which are important energy 

reserves, may increase proportional to total lipid fraction as the metabolic rate goes down.   

5.4.5 pH Modeling 

The dynamic model for pH is based on carbonate ions system to obtain a relationship 

between pH and the dissolved CO2 concentration. CO2 input is the main factor affecting pH 
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in the bioreactor. The pH is dominated by the carbonate buffering system, which includes 

carbon dioxide (CO2), bicarbonate ion (HCO3
-), and carbonate ion (CO3

2-). When CO2 is 

introduced into the culture, it dissolves in water and converts to carbonic acid, 

CO2 + H2O Û H2CO3                     (5.13) 

The carbonic acid is diprotic, which in turn dissociates into ionic form, as in 

H2CO3Û  HCO3
- + H+                    (5.14) 

The combination of all of these carbonate species make up the total dissolved inorganic 

carbon (DIC). The total amount of carbonic acid, bicarbonate, and carbonate species 

determines the pH value. It usually takes 2-3 seconds for CO2 to completely dissolve and 

only a fraction of the input CO2 dissolves before leaving the vent. A pH model was 

developed based on DIC dynamics in the media. This pH model is linearized about a pH of 

7.3 (Buehner, al et.2009). 

=)(tpH ))()((
1

tpHtmK DICpH
pH

-
t

            (5.15) 

where τpH = the lag time associated with the DIC settling (days) 

KpH = the conversion factor from DIC to pH units.  

mDIC = DIC concentration ( g/m3/d) 

As microalgae grow, CO2 is removed from the media, resulting in a rise in pH. As CO2 is 

continually input into the media, the addition of dissolved CO2 decreases the pH. By 

controlling and measuring CO2 variables, pH can be calculated via the model. In turn, 

adjusting CO2 inputs is significant to maintaining pH in a constant range during microalgae 



www.manaraa.com

 

78 
 

                                  

growth. 

5.5 Model Calibration 

In the model, the relationship between biomass growth and lipid production was 

included to simulate dynamic change in lipid production as biomass growth rate change in 

the CAB. The related parameters were initially estimated experimentally from data taken in 

CAB 3 and 4. These parameters as well as relationships measured during the experiments of 

the light study and growth study are summarized in Table 5.1.  

The production model was calibrated on actual lipid data sets collected from the CAB 

1 and 2 of the FACE 4 Photobioreactors under various biomass concentrations. Since 

experiments were carried out with low growth rates, the assumption for application in the 

model was that Equation 4.11 can be applied in high growth rate ranges as well. As shown in 

Figure 5.3, the model simulated data was compared with the actual experimental data 

(symbols) in order to explain the complex dynamics of lipid production. The standard error 

of the prediction is a measure of the accuracy of predictions. To calibrate the lipid production 

parameter in Equation 4.11, a general equation based on the weighted standard error of 

prediction was used (Equation 5.16).  

Standard error of prediction =  
1

)(
2

1

-

-å
n

XX
n

papi

          (5.16) 

where:  

Xpi = predicted lipid content in the model 
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Xpa = actual lipid content in the FACE 4 photobioreactors. 

n = the total number of samples included in the data set.  

The result of the standard error of prediction for the data set used in the validation 

process was 21%, which is greater than the 20% acceptability level. Thus, an adjustment was 

made on the main calibration parameters in order to validate the model. Taking an average of 

the data in the experimental equation and model equation and drawing an exponential 

treadline, a calibrated equation (Equation 5.17) for the trend line of the data was achieved for 

improved fitting of simulation to experimental data.  

L = 17.6e-0.5323µ                          (5.17) 

where L = lipid content (%), µ= growth rate (d-1), and -0.5323 = lipid production coefficient 

(kµ). The standard error of prediction for the calibrated model resulted in an improved 

acceptable values of 14.5% for the prediction for the data set. Biological models typically 

have a high (sometimes as high as 60 %) standard error of prediction because of their 

stochastic nature (Acien Fernandez et al., 1998). So a low value of 14.6% standard error of 

prediction for the specific data set is good for a biological system. The calibrated model fitted 

the experimental data well because of the calibrated kµ minimized the standard error between 

the model and the measurements. The results of the calibration are presented in Table 5.2. 
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Figure 5.3: Comparison of initial model simulation, experimental data (symbols), trend line 
of experimental data, and calibrated model simulation.  
 
 

Table 5.2:The summary of estimated parameters for the production model. 

Parameters Experimental estimation 
Final Calibrated 

parameters 

kµ -0.5125 -0.5323 

 

5.6 Model Simulations  

Once the model was calibrated, simulations were run for a 7-day period to estimate 

the optimum dilution rate for the CABs. For each model simulation, Qin was set to obtain the 

operational Ds of the simulated culture. Qin is the operational inflow rate of the culture media, 

which can be adjusted to determine the operational system dilution rate (Ds), as follows: 
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Ds = Q/V                               (5.18) 

Ds is the most sensitive factor that affects the cell retention time or the average cell age in the 

culture. A low Ds allows the culture to increase in biomass density, while a high Ds sustains 

culture health and keeps the culture less concentrated allowing better light penetration by 

washing out inadvertent contaminants and metabolites in the reactor. Sensitivity analysis was 

used to indicate the importance of calibrated parameters as a whole to a single parameter, 

compared with the accuracy on the observation. A Sensitivity analysis of the parameter Ds 

was performed to obtain the maximum value of lipid production. Based on the analysis, the 

optimal Ds that can get the maximum lipid production is 0.709 d-1. The maximum lipid 

production observed in the simulations was 3.27gd-1 per CAB or 50.42 gm-3d-1. Mairet et al. 

(2011) reported an optimal 0.5 d-1 dilution rate to obtain a 25 gm-3d-1 lipid production for a 

dynamic model of microalgae growth in a raceway pond. Compared with Mairet et al.’s 

model, the model in this study simulated a higher lipid production due to higher optimum Ds 

and higher production in the closed photobioreactor system. The values of Ds, Qin, and lipid 

production (Pl) used to represent the three different data sets are summarized in Table 5.3.  

 

Table 5.3: The operational parameters and results for each simulation. 
Parameter Ds = 0.0107 d-1 Ds = 0.478 d-1 Ds = 0.709 d-1 Ds = 0.925 d-1 
Qin (m3/d) 0.0007 0.031 0.046 0.06 

Pl (gd-1) per CAB 1.9189 3.1178 3.2724 3.0640 
Pl (gm-3d-1) 29.57 48.05 50.42 47.21 
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The simulations mimic the general oscillating trends in the actual data under actual 

dilution rates (Figure 5.4). Many lipid production runs were performed at various Ds until the 

maximum lipid production was approached the four final runs had Ds = 0.0107, 0.478, 0.709, 

and 0.925 day-1 as shown in Figure 5.4. The actual lipid production in the CAB was 

simulated with Ds = 0.0107 and Qin = 0.0007 m3/d, which was compared with lipid 

production under higher dilution rates in Figure 5.4. As expected, at the beginning of each 

simulation (lag phase) lipid production increase slowly due to low biomass concentration, 

while lipid production increase greatly at the steady-state phase, and then lipid production 

goes down again at the end of each simulation during the stationary phase. When Ds is below 

the optimal Ds, the lipid production increases in the reactor as Ds increases; when Ds is above 

the optimal Ds, the lipid production decreases in the reactor as Ds increases. This is due to the 

washing out of the culture at a faster rate than the accumulation of lipids at high Ds.   
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Figure 5.4: The calibrated model simulations of the change over time of lipid production.  
 

Simulations (Ds = 0.709 d-1, Qin = 0.046 m3/d) were run to investigate the effect of 

biomass fluctuation on PPFFR (Figure 5.5). Biomass and average PPFFR in the reactor 

change with respect to time were expected. During the transition phase, the biomass 

concentration was low along with high Ia. As steady-state was reached, the highest biomass 

concentration and lowest Ia were observed. Because Ia in the reactor is inversely proportional 

to the biomass concentration. Biomass concentration and lipid production were also 

simulated at optimum Ds over time in Figure 5.6. As expected, lipids production increased 

exponential as biomass growth and the maximum lipid production reached 3.27 g/d. The 

amount of lipids increased greatly and reached 3.13 g/d during the first 4 days, and then 

almost kept constant, suggesting that cells were much more active for lipid synthesis rather 

than cell propagation in the exponential growth phase. In the Figure 5.7, growth rate and 
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carbohydrates, proteins, and lipids partitioning were simulated in the model. As expected, the 

growth rate increased at beginning of the simulation, and then kept going down greatly until 

it reached the stationary phase; while the curves of lipids, carbohydrates, and proteins 

productions followed the trend of the biomass curve. These simulations indicated the model 

is capable of predicting the basic trends of light dynamics, growth kinetics, and lipid 

production in the FACE 4 photobioreacors.  
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Figure 5.5: A model simulation of the change in biomass concentration and concurrent 
changes in average PPFFR over time in the CAB.  
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Figure 5.6: A model simulation of the change in biomass concentration and concurrent 
changes in lipid production over time in the CAB.  
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Figure 5.7: A model simulation of the change in growth rate and biomass productions (lipids, 
carbohydrates, and proteins) over time in the CAB.  
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Simulations were also run under the actual Ds (Ds = 0.0107 d-1, Qin = 0.0007 m3/d) to 

estimate the amount of phosphorus, nitrogen, and CO2 consumptions during the microalgae 

growth in the CAB. Nutrients were assumed to be continuously fed into the in-flowing water 

line or air line to maintain a target of approximately 4 mg nitrate (NO3
-) L-1, 2.25 mg 

phosphate PO4
3-, and pH = 6 (Benson, 2003). To determine the optimum loading rates of the 

nutrients to the reactor, the loading mass of the nutrients, was adjusted until the optimum 

nutrients concentrations were obtained in the model simulations. The optimum loading rates 

for an inflow of 0.0007 m3/d are shown in Table 5.4. The trends of changes in nitrogen, 

phosphorus, and CO2 contestations over time were shown in Figure 5.8. When the nutrients 

are added at a constant input rate, the nutrients concentrations increase in the simulated 

culture until the biomass population approaches carrying capacity and then the nutrient 

concentration decrease. Based on mass balance, the total inflow of nutrients were converted 

into outflow to biomass, outflow from the culture, and settling of nutrients. The nutrient 

outflows to biomass increase as microalgae consume nutrients in order to produce biomass. 

The loss of nutrients due to settling of particulate nutrients is dependent on their 

concentrations and ks_n. At the beginning of the simulations, the nutrient concentrations start 

at an initial concentrations of optimum and increase with the additional inflows to 

accommodate the high growth rate during the exponential growth phase. Compared with the 

trend line of biomass production in Figure 5.5, the highest biomass production was observed 

at day 4 (entering the stationary growth phase), when nitrogen, phosphorus, and CO2 reach 

the maximum concentration. To maintain the culture at this maximum biomass concentration 
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the nutrients start declining due to consumption by the algae biomass and returns to optimal 

concentration during the stationary growth phase. 

 
Table 5.4: The nutrients loading parameters and optimum concentrations in the CAB. 

Nutrients Phosphorus Nitrogen CO2 
Optimum loading mass 

rate (g/d) 
30 214 4170 

Final concentration 
(mg/L) 

2.26 4.07 2.15 
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Figure 5.8: A model simulation of the changes in nitrogen, phosphorus, and CO2 
concentration under actual Ds over time in the CAB. (a) Phosphorus and nitrogen 
concentrations versus time; (b) CO2 concentration and pH versus time.  
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Chapter 6: Conclusions and Recommendations 

6.1 Summary and Conclusions 

In this study, a mechanistic model for lipid production and biomass growth of 

microalgae in a vertical flat-plate photobioreactor was proposed. The model has been 

assessed with experimental data of Nannochloropsis Salina in the FACE 4 photobioreactors. 

The presented model suggests that lipid production may be simplified within the framework 

of fundamental biological and physiological processes with respect to growth and lipid 

production, ecological stoichiometry, and dominant environmental factors which influence 

photosynthesis. More experimental data is needed for validation of the model. Based on the 

results of this study, the following conclusions can be drawn:  

1. Numerical relationships of the light dynamics and their impact on growth kinetics 

of Nannochloropsis Salina in the FACE 4 photobioreactors were determined for 

model development. Mathematical expressions and parameters were developed 

including these relationships: (1) PPFD emitted by lamp and the PPFD hitting the 

surface of the reactor (Io); (2) the average PPFFR at a certain distance of culture 

penetration (Iz) and the biomass concentration (X); light attenuation coefficient (ko) 

and biomass concatenation (X); the average PPFFR in the reactor (Ia) and the 

biomass (X); average PPFFR (Ia) and the specific growth rate (µ) in the 

experimental unit.  

2. A light diffusion coefficient (ka) of 0.0256 cm-1 and a biomass attenuation 

coefficient (kb) of 0.0007 cm-1 were estimated for the FACE 4 photobioreactors 
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system though light diffusion and attenuation studies respectively. Light 

attenuation coefficient (ko) was found to yield a linear partition of ko = 0.0326 + 

0.0007X, so light attenuation linearly increased with an increase in biomass. 

3. The specific growth rate (µ) was found to follow Steele’s equation from the growth 

study, resulting in the maximum growth rate (µmax) of 1.262 d-1. 

4. A negative exponential relationship between lipid production and biomass growth 

rate (µ) was estimated in the microalgae photobioreactors system.  

5. The mechanistic model illustrates the trends in light dynamics, growth kinetics, and 

lipid production in satisfactory agreement with measured data.  

6. Simulation produced by the calibrated model were used to predict and optimize 

lipid production in the FACE 4 photobioreactors.  

7. Simulation studying indicated that the lipid production could be optimized to as 

much as 3.2724 g/day, if the CABs were run at a continuous flow of 0.046 m3/day 

or 46 liters/day. 

6.2 Recommendations for Future Research 

Future research on this mechanistic model development remains to be done in order 

to optimize lipid yields, gain detailed and better understanding of biological processing 

strategies, and scale up from the laboratory to the industrial production scale. Based on this 

study, future work should be carried out on the following topics: 

1. Future experiments on carbohydrate and protein production are expected in order 
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to calibrate that part of the model. 

2. More experiments with high lipid production should be done in order to validate 

the model and optimize lipid production. The high lipid production can be 

achieved under nitrogen limitation environments. Because the nutrient stress leads 

not only to the accumulation of lipids, but also to reduction in microalgae growth, 

resulting in an increase of the lipids production. It will provide information to 

identify the optimal lipid production conditions.  

3. Once partitioning of lipids and nutrients are calibrated, economic component 

should be incorporate in the model.  

4. Efforts should be made to investigate the dominant limiting factors for scaling-up 

the photobioreacor systems. The availability of nutrients, nitrogen and phosphorus 

in particular, and CO2 are considered possible potential show-shoppers to 

sustained biomass and lipid production on large-scale.  

5. Consideration of running the FACE 4 CABs in series in order to improve the 

biomass and lipid production. 
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Mechanistic Model 
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Figure A. 1: Map of the mechanistic model in the FACE 4 photobioreactors in STELLA. 
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Figure A.2: Light dynamics model in the FACE 4 photobioreactors. 
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Figure A.3: Lipid production and biomass growth model.  
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Figure A.4: Conceptual model component of the phosphore flow in the reactor.  
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Figure A.4: Conceptual model component of the nitrogen flow in the reactor. 
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Figure A.5: Conceptual model component of the CO2 flow in the reactor.  
 
 
 
 
 
 
 
 
 
 
 
 
The following is the codes using in this mechanistic model. 
 
Biomass_balance(t) = Biomass_balance(t - dt) + (Inflow + Biomass_growth - Out_flow - 
Decay) * dt 
INIT Biomass_balance = 100 
INFLOWS: 
Inflow = Qin/V 
Biomass_growth = Biomass_balance*u 
OUTFLOWS: 
Out_flow = (Qin*Biomass_balance)/V 
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Decay = Kd*Biomass_balance 
CO2(t) = CO2(t - dt) + (inflow_CO2 - outflow_CO2 - outflow_CO2_to_biomass - 
settling_outflow_CO2) * dt 
INIT CO2 = 2.1 
INFLOWS: 
inflow_CO2 = (Qin*M_CO2)/V 
OUTFLOWS: 
outflow_CO2 = (CO2*Qin)/V 
outflow_CO2_to_biomass = Qin*stoichiometry_C/V 
settling_outflow_CO2 = CO2*ks_CO2*Qin/V 
Nitrogen(t) = Nitrogen(t - dt) + (inflow_N - outflow_N_to_biomass - settling_outflow_N - 
outlfow_N) * dt 
INIT Nitrogen = 4 
INFLOWS: 
inflow_N = (Qin*M_N)/V 
OUTFLOWS: 
outflow_N_to_biomass = Qin*stoichiometry_N/V 
settling_outflow_N = Nitrogen*ks_N*Qin/V 
outlfow_N = (Nitrogen*Qin)/V 
pH(t) = pH(t - dt) + (enter_DIC) * dt 
INIT pH = 6 
INFLOWS: 
enter_DIC = GRAPH((pHo+pH*TpH)/kpH) 
(0.00, 0.00), (10.0, 0.00), (20.0, 0.00), (30.0, 0.00), (40.0, 0.00), (50.0, 0.00), (60.0, 1.50), 
(70.0, 0.00), (80.0, 0.00), (90.0, 0.00), (100, 0.00) 
pHo(t) = pHo(t - dt) + (enter_DICo) * dt 
INIT pHo = 6 
INFLOWS: 
enter_DICo = settling_outflow_CO2/V 
Phosphore(t) = Phosphore(t - dt) + (inflow_P - outflow_P_to_biomass - outflow_p - 
settling_outflow_p) * dt 
INIT Phosphore = 2.5 
INFLOWS: 
inflow_P = (M_p*Qin)/V 
OUTFLOWS: 
outflow_P_to_biomass = Stoichiometry_P*Qin/V 
outflow_p = (Qin*Phosphore)/V 
settling_outflow_p = ks_p*Phosphore*Qin/V 
stoichiometry_C(t) = stoichiometry_C(t - dt) + (CO2_mass) * dt 
INIT stoichiometry_C = 2.1 
INFLOWS: 
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CO2_mass = Biomass_balance*1.47 
stoichiometry_N(t) = stoichiometry_N(t - dt) + (N_mass) * dt 
INIT stoichiometry_N = 4 
INFLOWS: 
N_mass = Biomass_balance*0.072 
Stoichiometry_P(t) = Stoichiometry_P(t - dt) + (p_mass) * dt 
INIT Stoichiometry_P = 2.5 
INFLOWS: 
p_mass = Biomass_balance*0.01 
A = 0.6387 
carbonhydrates% = (1-lipid_%/100)*0.4*100 
D = 25.4 
glycolipids = lipid_%*0.39 
Ia = 
(SUM((Vd*(Io*(EXP(kb*Biomass_balance*z1))))+(Vd*(Io*(EXP(kb*Biomass_balance*z2)
)))+(Vd*(Io*(EXP(kb*Biomass_balance*z3)))))/V) 
IDo = 903.07 
Io = (-kp*0.0127)+Ioair 
Ioair = (IDo*EXP(ka*D))*shade 
Iopt = 158.3 
ka = -0.0257 
kb = -0.0007 
Kd = 0.0001 
Ku = -0.5323 
kp = 
((360*Biomass_balance)/(430+Biomass_balance+(Biomass_balance*Biomass_balance/2500
)))*100 
kpH = 3 
ks_CO2 = inflow_CO2/(V*CO2)-1/tw 
ks_N = inflow_N/(V*Nitrogen)-1/tw 
ks_p = inflow_P/(V*Phosphore)-1/tw 
lipid = lipid_%*0.01*Biomass_balance*Qin 
lipid_% = 18.543*EXP(kl*u) 
M_CO2 = 4170 
M_N = 214 
M_p = 35 
number = 0 
phospholipid = lipid_%*0.38 
proteins% = (1-lipid_%/100)*0.6*100 
Qin = 0.0007 
shade = 0.9887*EXP(-0.4988*number) 
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simple_lipids = lipid_%*0.22 
Temp = 25 
TpH = 7 
tw = 7 
u = 
Umx*((1.066^(Temp-25))*((Ia/Iopt)*(EXP((-Ia/Iopt)+1)))*(MIN(Nitrogen/(Nitrogen+0.020)
,Phosphore/(Phosphore+0.005),CO2/(CO2+0.020)))) 
Umx = 1.25 
V = 0.06489 
Vd = 0.03386667*A 
volP = Biomass_balance*Qin/V 
z1 = 3 
z2 = 6 
z3 = 9 
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Appendix B 

Data from the Light Studies 
 
 

Table B.1: Light attenuation study at selected culture concentrations in a CAB of the FACE 4 
photobioreactors.  
 

Culture (%) Biomass (mg/L) Average PPFFR (µmols-1m-2) Ko (cm-1) 
100 787.2 47.0378 0.5383 

75 565.103125 54.263 0.4526 

50 426.74375 77.221 0.3611 

25 273.225 128.493 0.2203 

0 0 365.7631 0.0098 

 
 
Table B.2: Light attenuation through culture in the experimental unit.  
 

 Distance from light sources side wall 

(cm) 

2.54 5.08 7.62 

Culture (%) Biomass (g/m3) Average PPFFR (µmols-1m-2) 

100 787.200 115.733 14.839 91.000 

75 565.103 117.884 28.289 62.156 

50 426.744 153.267 47.152 44.188 

25 273.225 191.500 105.024 24.250 

0 0 378.617 369.083 360.306 

 
 
Table B.3: Light diffusion study at selected distance from the lamp in each CAB of the FACE 
4 photobioreactors. 
 

 Surface PPFFR (µmols-1m-2) 

Distance from light source (cm) CAB1 CAB 2 CAB 3 CAB 4 

10.16 728.998 567.187 823.238 707.402 

25.4 482.935 386.727 472.884 476.069 

40.64 350.790 261.056 338.423 339.851 
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Table B.4: Data for relationships between surface PPFFR (Io) at both front and back sides of 
CABs and thickness at three selected distances from the light source.  
 

 Average PPFFR (µmols-1m-2) 
Distance from light 

source (cm) 
CAB1 
front 

CAB1 
back 

CAB2 
front 

CAB 2 
back 

CAB3 
front 

CAB 3 
back 

CAB4 
front 

CAB 4 
back 

10.16 728.998 325.785 567.187 265.611 823.238 320.864 707.402 262.114 
25.4 482.935 235.985 386.727 179.651 472.884 211.645 476.069 205.396 
40.64 350.790 188.175 261.056 129.646 338.423 161.537 339.851 151.632 

 
 
Table B.5: Data for the relationships between Io and Ioair under selected culture 
concentrations. 
 

Culture (%) 0 25 50 75 100 

Biomass (mg/L) 0 273.225 426.74375 565.103125 787.2 

Thickness of the 

wall =1.27 cm 

PPFFR (µmols-1m-2) 

Sensor locations Io Ioair Io Ioair Io Ioair Io Ioair Io Ioair 

1 379.417 417.9 379.417 158.7 379.4171 149.4 379.417 105.6 379.4171 112.4 

2 333.264 420 333.264 197.2 333.2641 154 333.264 65.9 333.2641 121.9 

3 292.794 385 292.794 181.3 292.7936 143.1 292.794 83.61 292.7936 92.6 

4 335.892 345 335.892 184.7 335.8915 145.2 335.892 124.3 335.8915 111.2 

5 393.72 397.15 393.72 209.1 393.72 166.6 393.72 147.55 393.72 132.5 

6 374.517 389.7 374.517 209.3 374.5166 156.3 374.517 135 374.5166 120.7 

7 354.646 361.9 354.646 202.4 354.646 155.1 354.646 133.3 354.646 106.9 

8 378.186 369.6 378.186 201.4 378.1855 165.6 378.186 142.9 378.1855 126.9 

9 381.418 321.3 381.418 179.4 381.4175 144.1 381.418 122.8 381.4175 116.5 
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Appendix C 

Data from the Growth Studies 
 
Table C.1: Change in the biomass concentration and average PAR during the growth study.   
 
 

 
Date 

 
time 

Optical 
Density(abs) 

 
Biomass(mg/L) 

Average 
PPFFR  

(µmols-1m-2) 

Total 
Hours 

6/8/2012 0AM 0.078 0.0417 137.7304 0 
6/8/2012 6AM 0.1 0.0643 135.6623 6 
6/8/2012 12PM 0.106 0.0705 135.1037 12 
6/8/2012 6PM 0.107 0.0715 135.0108 18 
6/9/2012 0AM 0.128 0.0931 133.0751 24 
6/9/2012 6AM 0.138 0.1034 132.1631 30 
6/9/2012 12PM 0.169 0.1354 129.3754 36 
6/9/2012 6PM 0.152 0.1179 130.8967 42 
6/10/2012 0AM 0.245 0.2136 122.7872 48 
6/10/2012 6AM 0.284 0.2537 119.5379 54 
6/10/2012 12PM 0.289 0.2589 119.1275 60 
6/10/2012 6PM 0.311 0.2815 117.3388 66 
6/11/2012 0AM 0.349 0.3206 114.3122 72 
6/11/2012 6AM 0.394 0.3670 110.8288 78 
6/11/2012 12PM 0.428 0.4020 108.2675 84 
6/11/2012 6PM 0.443 0.4174 107.1564 90 
6/12/2012 0AM 0.483 0.4586 104.249 96 
6/12/2012 6AM 0.493 0.4689 103.5345 102 
6/12/2012 12PM 0.54 0.5173 100.2416 108 
6/12/2012 6PM 0.575 0.5533 97.85768 114 
6/13/2012 0AM 0.626 0.6058 94.48506 120 
6/13/2012 6AM 0.687 0.6686 90.60346 126 
6/13/2012 12PM 0.68 0.6614 91.04067 132 
6/13/2012 6PM 0.682 0.6634 90.91554 138 
6/14/2012 0AM 0.765 0.7489 85.87153 144 
6/14/2012 6AM 0.856 0.8426 80.66237 150 
6/14/2012 12PM 0.745 0.7283 87.06075 156 
6/14/2012 6PM 0.804 0.7890 83.59906 162 
6/15/2012 0AM 0.863 0.8498 80.275 168 
6/15/2012 6AM 0.89 0.8776 78.79823 174 
6/15/2012 12PM 0.918 0.9064 77.29545 180 
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6/15/2012 6PM 0.94 0.9290 76.13483 186 
6/16/2012 0AM 0.968 0.9578 74.68285 192 
6/16/2012 6AM 0.983 0.9733 73.91642 198 
6/16/2012 12PM 0.959 0.9486 75.14651 204 
6/16/2012 6PM 0.976 0.9661 74.2731 210 
6/17/2012 0AM 1.022 1.0134 71.96033 216 
6/17/2012 6AM 1.033 1.0248 71.41803 222 
6/17/2012 12PM 1.038 1.0299 71.17288 228 
6/17/2012 6PM 1.022 1.0134 71.96033 234 
6/18/2012 0AM 1.096 1.0896 68.38993 240 
6/18/2012 6AM 1.1 1.0937 68.20206 246 
6/18/2012 12PM 1.079 1.0721 69.19415 252 
 
 
 
Table C.2: Data for the relationship between biomass concentration and optical density.  
 

Biomass (mg Dry wt./L) Optical Density 

1055 1.066 

823 0.859 

706 0.661 

302 0.38 

0 0.025 

 
 
Table C.3: Data for the relationship between biomass concentration and average PPFFR 
during the growth study.  
 

Culture (%) Average PPFFR 

(µmols-1m-2) 
Dry weight concentrations(mg 

Dry wt./L) 

100 70.367 1055 

75 76.500 823 

50 86.950 706 

25 112.127 302 

0 150.800 0 
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Abstract 

Energy production via extracted lipids from microalgae has emerged as a promising 

alternative to fossil fuels. To optimize microalgae biomass production in photobioreactors, 

identification of optimal operating conditions, optimization of the microalgae production 

processes, and quantification of fundamental biochemical responses to the environmental 

factors are the most significant challenges. These need to be addressed for microalgae 

biomass productions to become economically feasible. For that, this study developed a 

mechanistic model of microalgal lipid production with respect to environmental and growth 

conditions, such as photosynthetic photon flux density (PPFFD), essential nutrients, 

temperature, and CO2 availability. The main objective of this mechanistic model was to 

identify nutrient and light conditions that optimize the lipid synthesis in flat-plate 

photobioreactors with metal halide lamps. In this model, mass balance, quantum mechanics, 

and soichiometry were taken into account to simulate microalgae biomass production and 

chemical conversion of light energy into lipids. Mathematical expressions of various 

fundamental biological and physiological processes governing lipid productivity were 
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determined and integrated into the model to study their complex interactions and to predict 

biomass, protein, carbohydrate, and lipid productivities. Simulations were compared with 

actual data for Nannochloropsis salina culture grown the four automated and controlled 

environment photobioreactors (FACE 4) located at Texas Agrilife Research Center for model 

calibration and validation.  
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